1 Introduction
Contents

1 Introduction

2 Strictly Completing
1 Introduction

2 Strictly Completing

3 Main Result
1 Introduction

2 Strictly Completing

3 Main Result

4 Proof outline for main result
Contents

1 Introduction

2 Strictly Completing

3 Main Result

4 Proof outline for main result

5 Completing partial latin boxes
1. Introduction

2. Strictly Completing

3. Main Result

4. Proof outline for main result

5. Completing partial latin boxes
Definition 1

A partial latin square of order n is an $n \times n$ array of n symbols so that each symbol appears at most once in each row and column.
Definition 1

A partial latin square of order n is an $n \times n$ array of n symbols so that each symbol appears at most once in each row and column.

\[
\begin{array}{ccc}
1 & 3 & 5 \\
4 & 3 & \\
1 & 3 & \\
3 & 1 & \\
3 & 4 & 1
\end{array}
\]
Definition 1

A partial latin square of order n is an $n \times n$ array of n symbols so that each symbol appears at most once in each row and column.
Theorem 1
(Smetaniuk, 1981) Every partial latin square of order n with at most $n - 1$ entries is completable.
Definition 2

A partial Latin square P of order n is called avoidable if there is a Latin square L of order n such that on every set of n symbols L contains no part of P.
Definition 2

A partial Latin square P of order n is called avoidable if there is a Latin square L of order n such that on every set of n symbols L contains no part of P.

$$
\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3 \\
4 & 1 & 2 \\
3 & 4 & 2 \\
\end{array}
$$
Definition 2

A partial Latin square P of order n is called avoidable if there is a Latin square L of order n such that on every set of n symbols L contains no part of P.

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3 \\
4 & 1 & \\
5 & 2 & \\
3 & 4 & \\
\end{array}
\quad
\begin{array}{cccc}
2 & 3 & 5 & 1 & 4 \\
1 & 2 & 4 & 5 & 3 \\
5 & 1 & 3 & 4 & 2 \\
3 & 4 & 1 & 2 & 5 \\
4 & 5 & 2 & 3 & 1 \\
\end{array}
\]
Theorem 1

Every partial Latin square of order \(k \geq 4 \) is avoidable.
Theorem 1

Every partial Latin square of order $k \geq 4$ is avoidable.
Theorem 1

Every partial Latin square of order $k \geq 4$ is avoidable.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Current Section

1. Introduction

2. Strictly Completing

3. Main Result

4. Proof outline for main result

5. Completing partial latin boxes
Definition 3

Let P and Q be partial latin squares of order n that avoid each other. We say that P is strictly completable with respect to Q if P can be completed to a Latin square L and L avoids Q.
Definition 3

Let P and Q be partial latin squares of order n that avoid each other. We say that P is strictly completable with respect to Q if P can be completed to a Latin square L and L avoids Q.

Conjecture 1

Let P and Q be partial latin squares of order $n > 3$ that avoid each other. If P contains at most $n - 2$ entries, then P can is strictly completable with respect to Q.
Definition 3

Let P and Q be partial latin squares of order n that avoid each other. We say that P is strictly completable with respect to Q if P can be completed to a Latin square L and L avoids Q.

Conjecture 1

Let P and Q be partial latin squares of order $n > 3$ that avoid each other. If P contains at most $n - 2$ entries, then P can is strictly completable with respect to Q.

\[
\begin{array}{ccc}
1 & 2 & 3 \\
\hline \\
\hline \\
\end{array}
\]
Definition 3

Let P and Q be partial latin squares of order n that avoid each other. We say that P is strictly completable with respect to Q if P can be completed to a Latin square L and L avoids Q.

Conjecture 1

Let P and Q be partial latin squares of order $n > 3$ that avoid each other. If P contains at most $n - 2$ entries, then P can is strictly completable with respect to Q.

\[
\begin{array}{ccc}
1 & 2 & 3 \\
\hline
\end{array}
\quad
\begin{array}{c}
4 \\
\hline
\end{array}
\]
1. Introduction

2. Strictly Completing

3. Main Result

4. Proof outline for main result

5. Completing partial latin boxes
Theorem 2

Let \(k = 4t \) for \(t \geq 9 \) be a positive integer.

Let \(P \) and \(Q \) be partial latin squares of order \(k \) such that \(P \) and \(Q \) avoid each other. If \(P \) contains at most \(t-1 \) entries, then \(P \) can be strictly completed with respect to \(Q \).
Theorem 2

Let $k = 4t$ for $t \geq 9$ be a positive integer.

Let P and Q be partial latin squares of order k such that P and Q avoid each other.

If P contains at most $t - 1$ entries, then P can be strictly completed with respect to Q.
Theorem 2

Let $k = 4t$ for $t \geq 9$ be a positive integer.

Let P and Q be partial latin squares of order k such that P and Q avoid each other.

If P contains at most $t - 1$ entries, then P can be strictly completed with respect to Q.
Lemma 3

Let P and Q be partial latin squares of order 4 that avoid each other and let P contain at most one entry. Then P can be strictly completed with respect to Q provided

1. Q contains at most 3 symbols, or
2. Q contains 4 symbols of which at least one appears only once.
Lemma 3

Let P and Q be partial latin squares of order 4 that avoid each other and let P contain at most one entry. Then P can be strictly completed with respect to Q provided

1. Q contains at most 3 symbols, or
Lemma 3

Let P and Q be partial latin squares of order 4 that avoid each other and let P contain at most one entry. Then P can be strictly completed with respect to Q provided

1. Q contains at most 3 symbols, or
2. Q contains 4 symbols of which at least one appears only once.
Definition 4

Let X be a partial array of symbols of order 4.
Definition 4

Let X be a partial array of symbols of order 4.

A 4-tuple of symbols is called bad in X if each symbol in the 4-tuple appears at least twice in X.
Main Result

preliminary results

Definition 4

Let X be a partial array of symbols of order 4.

A 4-tuple of symbols is called bad in X if each symbol in the 4-tuple appears at least twice in X.

Lemma 4

Let x be a symbol appearing in X. There are at most 20 bad 4-tuples in X containing x.
Main Result

Theorem of Daykin and Häggkvist

Theorem 5

Let $0 \leq d < k$ and let H be an r-partite r-uniform hypergraph with minimum degree $\delta(H)$ and $|V(H)| = rk$. If

$$\delta(H) > \frac{r-1}{r} \left(k^{r-1} - (k - d)^{r-1} \right),$$

then H has more than d independent edges.
Current Section

1. Introduction
2. Strictly Completing
3. Main Result
4. Proof outline for main result
5. Completing partial latin boxes
We may suppose that
We may suppose that

1. the symbols appearing in P come from the set
 \{1, 2, \ldots, t\},
We may suppose that

1. the symbols appearing in P come from the set $\{1, 2, \ldots, t\}$,
2. no two entries appear in the same 4×4 subsquare of P, and
We may suppose that

1. the symbols appearing in \(P \) come from the set \(\{1, 2, \ldots, t\} \),
2. no two entries appear in the same \(4 \times 4 \) subsquare of \(P \), and
3. no symbol appears in two \(4 \times 4 \) subsquares of \(P \) sharing the same rows or columns.
We may suppose that

1. the symbols appearing in P come from the set $\{1, 2, \ldots, t\}$,
2. no two entries appear in the same 4×4 subsquare of P, and
3. no symbol appears in two 4×4 subsquares of P sharing the same rows or columns.
Proof outline for main result

Let T be a partial latin square of order t on the symbol set $\{X_1, \ldots, X_t\}$ such that

$$
\begin{array}{c|c|c|c}
X_1 & X_2 & X_3 \\
X_4 & X_5 & X_6 \\
X_7 & X_8 & X_9 \\
\end{array}
$$

Since T contains at most $t-1$ entries, T can be completed.
Let T be a partial latin square of order t on the symbol set $\{X_1, \ldots, X_t\}$ such that

$\text{cell } (j, l) \text{ contains } X_i \text{ if and only if } i \text{ appears in the corresponding } 4 \times 4 \text{ subsquare of } P.$
Let T be a partial latin square of order t on the symbol set \{X_1, \ldots, X_t\} such that

\[
\begin{array}{cccc}
\text{cell} (j, l) \text{ contains } X_i \text{ if and only if } i \text{ appears in the corresponding } 4 \times 4 \text{ subsquare of } P.
\end{array}
\]
Let T be a partial latin square of order t on the symbol set $\{X_1, \ldots, X_t\}$ such that

$\text{cell } (j, l) \text{ contains } X_i \text{ if and only if } i \text{ appears in the corresponding } 4 \times 4 \text{ subsquare of } P.$
Let T be a partial latin square of order t on the symbol set $\{X_1, \ldots, X_t\}$ such that

cell (j, l) contains X_i if and only if i appears in the corresponding 4×4 subsquare of P.

Since T contains at most $t - 1$ entries, T can be completed.
We wish to find a partition S_1, S_2, \ldots, S_t of $[4t]$ such that
We wish to find a partition S_1, S_2, \ldots, S_t of $[4t]$ such that

1. $|S_i| = 4$ for each $i \in [t]$,
Proof outline for main result

We wish to find a partition S_1, S_2, \ldots, S_t of $[4t]$ such that

1. $|S_i| = 4$ for each $i \in [t]$,
2. $i \in S_i$ for each $i \in [t]$,
We wish to find a partition S_1, S_2, \ldots, S_t of $[4t]$ such that

1. $|S_i| = 4$ for each $i \in [t]$,
2. $i \in S_i$ for each $i \in [t]$,
3. there are latin squares of order 4 on S_i avoiding the 4×4 subsquares in Q corresponding to each X_i, and
We wish to find a partition \(S_1, S_2, \ldots, S_t \) of \([4t]\) such that

1. \(|S_i| = 4\) for each \(i \in [t] \),
2. \(i \in S_i \) for each \(i \in [t] \),
3. there are latin squares of order 4 on \(S_i \) avoiding the \(4 \times 4 \) subsquares in \(Q \) corresponding to each \(X_i \), and
4. there are latin squares of order 4 on \(S_i \) completing the \(4 \times 4 \) subsquares in \(P \) corresponding to each \(X_i \).
We wish to find a partition \(S_1, S_2, \ldots, S_t \) of \([4t]\) such that

1. \(|S_i| = 4\) for each \(i \in [t] \),
2. \(i \in S_i \) for each \(i \in [t] \),
3. there are latin squares of order 4 on \(S_i \) avoiding the \(4 \times 4 \) subsquares in \(Q \) corresponding to each \(X_i \), and
4. there are latin squares of order 4 on \(S_i \) completing the \(4 \times 4 \) subsquares in \(P \) corresponding to each \(X_i \).
If such a partition can be found, then \(P \) is strictly completable with respect to \(Q \).
If such a partition can be found, then P is strictly completable with respect to Q.
If such a partition can be found, then P is strictly completable with respect to Q.
Let H be a 4-partite, 4-uniform hypergraph with vertex set \{\(A, B, C, D \)\} such that
Let H be a 4-partite, 4-uniform hypergraph with vertex set $\{A, B, C, D\}$ such that

1. $A = \{(X_i, i) : i \in [t]\}$,
2. $B = \{t + 1, \ldots, 2t\}$,
3. $C = \{2t + 1, \ldots, 3t\}$, and
4. $D = \{3t + 1, \ldots, 4t\}$.

The edge $((X_i, i), b, c, d)$ is included in H if and only if $\{i, b, c, d\}$ is not a bad 4-tuple for each 4 \times 4 subsquare of Q corresponding to X_i in T.

Let H be a 4-partite, 4-uniform hypergraph with vertex set \{A, B, C, D\} such that

1. $A = \{(X_i, i) : i \in [t]\}$,
2. $B = \{t + 1, \ldots, 2t\}$,
3. $C = \{2t + 1, \ldots, 3t\}$, and
4. $D = \{3t + 1, \ldots, 4t\}$.

The edge $((X_i, i), b, c, d)$ is included in H if and only if \{i, b, c, d\} is not a bad 4-tuple for each 4×4 subsquare of Q corresponding to X_i in T.
Proof outline for main result

\[d_H((X_i, i)) \geq t^3 - 20t \]

According to the theorem of Daykin and Häggkvist, \(H \) has \(t \) independent edges provided \(\delta(H) > \frac{3}{4}(t^3 - 1) \).

Theorem 6

Let \(0 \leq d < k \) and let \(H \) be an \(r \)-partite \(r \)-uniform hypergraph with minimum degree \(\delta(H) \) and \(|V(H)| = rk \). If \(\delta(H) > r - 1 \frac{kr}{r} - 1 - (k - d) \frac{r}{r} - 1 \), then \(H \) has more than \(d \) independent edges.
Proof outline for main result

\[d_H((X_i, i)) \geq t^3 - 20t \]

\[\delta(H) \geq t^3 - 20t \]
$d_H((X_i, i)) \geq t^3 - 20t$

$\delta(H) \geq t^3 - 20t$

According to the theorem of Daykin and Häggkvist; H has t independent edges provided $\delta(H) > \frac{3}{4}(t^3 - 1)$.
\[d_H((X_i, i)) \geq t^3 - 20t \]

\[\delta(H) \geq t^3 - 20t \]

According to the theorem of Daykin and Häggkvist; \(H \) has \(t \) independent edges provided \(\delta(H) > \frac{3}{4}(t^3 - 1) \).

Theorem 6

Let \(0 \leq d < k \) and let \(H \) be an \(r \)-partite \(r \)-uniform hypergraph with minimum degree \(\delta(H) \) and \(|V(H)| = rk \). If

\[\delta(H) > \frac{r - 1}{r} \left(k^{r-1} - (k - d)^{r-1} \right) \]

then \(H \) has more than \(d \) independent edges.
\[\delta(H) \geq t^3 - 20t \]
\[
\delta(H) \geq t^3 - 20t > \frac{3}{4}(t^3 - 1)
\]
Proof outline for main result

\[\delta(H) \geq t^3 - 20t > \frac{3}{4}(t^3 - 1) \]

Let \(\{e_1, \ldots, e_t\} \) be \(t \) independent edges in \(H \) where
\[e_i = ((X_i, i), b, c, d). \]
Proof outline for main result

\[\delta(H) \geq t^3 - 20t > \frac{3}{4}(t^3 - 1) \]

Let \(\{e_1, \ldots, e_t\} \) be \(t \) independent edges in \(H \) where \(e_i = ((X_i, i), b, c, d) \).

Set \(S_i = \{i, b, c, d\} \) for each \(i \).
Completing partial latin boxes

Current Section

1. Introduction
2. Strictly Completing
3. Main Result
4. Proof outline for main result
5. Completing partial latin boxes
Theorem 7

Let $t \geq 9$. Let P be a $2 \times 4t \times 4t$ partial latin box with at most $2t - 1$ entries. Then P can be completed.
THANK YOU FOR YOUR ATTENTION!