Revolutionaries and Spies II:
Hypercubes & Complete Multipartite Graphs

Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

slides available on DBW preprint page

Joint work with
Jane V. Butterfield, Daniel W. Cranston, Gregory Puleo, and Reza Zamani
A Game of National Security

Two teams: r revolutionaries and s spies on a graph G.
A Game of National Security

Two teams: \(r \) revolutionaries and \(s \) spies on a graph \(G \).

Start: Each rev and then each spy occupies a vertex.
A Game of National Security

Two teams: \(r \) revolutionaries and \(s \) spies on a graph \(G \).

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.
A Game of National Security

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.

Goal: Revs. want a meeting of size m unguarded by spies; spies want to prevent this.
A Game of National Security

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.

Goal: Revs. want a meeting of size m unguarded by spies; spies want to prevent this.

Def. $RS(G, m, r, s)$ is the resulting game; who wins?

Invented by Beck
A Game of National Security

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.

Goal: Revs. want a meeting of size m unguarded by spies; spies want to prevent this.

Def. $RS(G, m, r, s)$ is the resulting game; who wins? Invented by Beck

Obs. $s \geq \min\{|V(G)|, r - m + 1\} \Rightarrow$ spies win.
Spies can sit on all vertices or follow all but $m - 1$ revs.
A Game of National Security

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.

Goal: Revs. want a meeting of size m unguarded by spies; spies want to prevent this.

Def. $RS(G, m, r, s)$ is the resulting game; who wins?

Invented by Beck

Obs. $s \geq \min\{|V(G)|, r - m + 1\} \Rightarrow$ spies win.
Spies can sit on all vertices or follow all but $m - 1$ revs.

Obs. $s < \min\{|V(G)|, \lfloor r/m \rfloor\} \Rightarrow$ revs win.
Revs can make more meetings than spies can guard.
A Game of National Security

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.

Goal: Revs. want a meeting of size m unguarded by spies; spies want to prevent this.

Def. $RS(G, m, r, s)$ is the resulting game; who wins?

Invented by Beck

Obs. $s \geq \min\{|V(G)|, r - m + 1\} \implies$ spies win.

Spies can sit on all vertices or follow all but $m - 1$ revs.

Obs. $s < \min\{|V(G)|, \lfloor r/m \rfloor\} \implies$ revs win.

Revs can make more meetings than spies can guard.

Ques. Fix G, m, r. How many spies are needed to win?
Spy-Good Graphs

Def. G is spy-good if $\lceil r/m \rceil$ spies win, for all r, m.
Spy-Good Graphs

Def. G is spy-good if $\lceil r/m \rceil$ spies win, for all r, m.

• Trees are spy-good. (Proved also by Howard & Smyth)
Spy-Good Graphs

Def. G is **spy-good** if $\lceil r/m \rceil$ spies win, for all r, m.

- Trees are spy-good. *(Proved also by Howard & Smyth)*
- Unicyclic graphs are spy-good. $\lfloor r/m \rfloor$ spies also win if the one cycle is short enough.
Spy-Good Graphs

Def. G is spy-good if $\lceil r/m \rceil$ spies win, for all r, m.

- Trees are spy-good. *(Proved also by Howard & Smyth)*

- Unicyclic graphs are spy-good. $\lfloor r/m \rfloor$ spies also win if the one cycle is short enough.

- Graphs with a dominating vertex u are spy-good. Spies wait at u except when guarding meetings elsewhere.
Spy-Good Graphs

Def. G is spy-good if $\lceil r/m \rceil$ spies win, for all r, m.

- Trees are spy-good. *(Proved also by Howard & Smyth)*
- Unicyclic graphs are spy-good. $\lfloor r/m \rfloor$ spies also win if the one cycle is short enough.
- Graphs with a dominating vertex u are spy-good. Spies wait at u except when guarding meetings elsewhere.
- Interval graphs are spy-good ($\lfloor r/m \rfloor$ spies suffice).
Spy-Good Graphs

Def. G is spy-good if $\lceil r/m \rceil$ spies win, for all r, m.

- Trees are spy-good. (Proved also by Howard & Smyth)
- Unicyclic graphs are spy-good. $\lfloor r/m \rfloor$ spies also win if the one cycle is short enough.
- Graphs with a dominating vertex u are spy-good. Spies wait at u except when guarding meetings elsewhere.
- Interval graphs are spy-good ($\lfloor r/m \rfloor$ spies suffice).
- Chordal graphs?
Spy-Bad Graphs

Def. G is spy-bad if $r - m$ spies lose, for some r, m.
Spy-Bad Graphs

Def. G is spy-bad if $r - m$ spies lose, for some r, m.

- For all r, m, some chordal graph is spy-bad.
Spy-Bad Graphs

Def. G is spy-bad if $r - m$ spies lose, for some r, m.

- For all r, m, some chordal graph is spy-bad.

Revs initially occupy the vertices of the clique.
Spy-Bad Graphs

Def. G is spy-bad if $r - m$ spies lose, for some r, m.

- For all r, m, some chordal graph is spy-bad.

Revs initially occupy the vertices of the clique.

Spies can’t reach all threatened meetings outside. Some m unguarded revs can meet on the first round.
Spy-Bad Graphs

Def. G is spy-bad if $r - m$ spies lose, for some r, m.

- For all r, m, some chordal graph is spy-bad.

Revs initially occupy the vertices of the clique.

Spies can’t reach all threatened meetings outside. Some m unguarded revs can meet on the first round.

Thought: spy-bad means dense enough and sparse enough for revs to threaten some unreachable mtg.
Random Graphs

Thm. For fixed r, m, the random graph is almost surely spy-bad ($r - m$ spies lose, $r - m + 1$ spies win).
Thm. For fixed r, m, the random graph is almost surely spy-bad ($r - m$ spies lose, $r - m + 1$ spies win).

Pf. The revs occupy some r vertices.
Thm. For fixed r, m, the random graph is almost surely spies-bad ($r - m$ spies lose, $r - m + 1$ spies win).

Pf. The revs occupy some r vertices.
The $r - m$ spies occupy some set S, size at most $r - m$.
Thm. For fixed r, m, the random graph is almost surely spy-bad ($r - m$ spies lose, $r - m + 1$ spies win).

Pf. The revs occupy some r vertices.

The $r - m$ spies occupy some set S, size at most $r - m$.

Some set T of m vertices has unguarded revs.
Thm. For fixed r, m, the random graph is almost surely spy-bad ($r - m$ spies lose, $r - m + 1$ spies win).

Pf. The revs occupy some r vertices.

The $r - m$ spies occupy some set S, size at most $r - m$.

Some set T of m vertices has unguarded revs.

In the random graph, almost surely, for every set S of size $r - m$ and every set T of size m, some vertex v is adjacent to all of T and none of S.
Thm. For fixed r, m, the random graph is almost surely spy-bad ($r - m$ spies lose, $r - m + 1$ spies win).

Pf. The revs occupy some r vertices.
The $r - m$ spies occupy some set S, size at most $r - m$.
Some set T of m vertices has unguarded revs.
In the random graph, almost surely, for every set S of size $r - m$ and every set T of size m, some vertex v is adjacent to all of T and none of S.
The revs meet at v in the first move and win.
Thm. For $m = 2$, the hypercube Q_d is spy-bad if $d > r$.
Thm. For $m = 2$, the hypercube Q_d is spy-bad if $d > r$.

Pf. $V(Q_d) = \{0, 1\}^d$. Vertices of weights 1, 2, 3 are singles, doubles, triples. Claim $r - 2$ spies can’t win.
Hypercubes

Thm. For $m = 2$, the hypercube Q_d is spy-bad if $d > r$.

Pf. $V(Q_d) = \{0, 1\}^d$. Vertices of weights 1, 2, 3 are singles, doubles, triples. Claim $r - 2$ spies can’t win.

Revs start at r singles, threatening at $\binom{r}{2}$ doubles.
Thm. For $m = 2$, the hypercube Q_d is spy-bad if $d > r$.

Pf. $V(Q_d) = \{0, 1\}^d$. Vertices of weights 1, 2, 3 are singles, doubles, triples. Claim $r - 2$ spies can’t win. Revs start at r singles, threatening at $\binom{r}{2}$ doubles. $r - 2$ spies at singles can’t reach all threats at doubles.
Thm. For $m = 2$, the hypercube Q_d is spy-bad if $d > r$.

Pf. $V(Q_d) = \{0, 1\}^d$. Vertices of weights 1, 2, 3 are singles, doubles, triples. Claim $r - 2$ spies can’t win.

Revs start at r singles, threatening at $\binom{r}{2}$ doubles.

$r - 2$ spies at singles can’t reach all threats at doubles.

$\leq r - 5$ spies at singles leave too many threats at doubles (spies at triples reach only three doubles).
Thm. For $m = 2$, the hypercube Q_d is spy-bad if $d > r$.

Pf. $V(Q_d) = \{0, 1\}^d$. Vertices of weights $1, 2, 3$ are singles, doubles, triples. Claim $r - 2$ spies can’t win.

Revs start at r singles, threatening at $\binom{r}{2}$ doubles. $r - 2$ spies at singles can’t reach all threats at doubles.

$r - 4$ spies at singles leave six threats at doubles, not reached by two triples (two triangles don’t cover $E(K_4)$).
Thm. For $m = 2$, the hypercube Q_d is spy-bad if $d > r$.

Pf. $V(Q_d) = \{0, 1\}^d$. Vertices of weights 1, 2, 3 are singles, doubles, triples. Claim $r - 2$ spies can’t win.

Revs start at r singles, threatening at $\binom{r}{2}$ doubles. $r - 2$ spies at singles can’t reach all threats at doubles.

$r - 4$ spies at singles leave six threats at doubles, not reached by two triples (two triangles don’t cover $E(K_4)$).

$\therefore r - 3$ spies occupy singles, plus one at a triple.
Thm. For $m = 2$, the hypercube Q_d is spy-bad if $d > r$.

Pf. $V(Q_d) = \{0, 1\}^d$. Vertices of weights 1, 2, 3 are singles, doubles, triples. Claim $r - 2$ spies can’t win.

Revs start at r singles, threatening at $\binom{r}{2}$ doubles. $r - 2$ spies at singles can’t reach all threats at doubles.

$r - 4$ spies at singles leave six threats at doubles, not reached by two triples (two triangles don’t cover $E(K_4)$).

$\therefore r - 3$ spies occupy singles, plus one at a triple. By symmetry, spy is at 123, with the others at 4, ..., r.
Revs move to win

Revs at 1 and 2 move to \emptyset.
For $3 \leq j \leq r$, the rev at j moves to jd.
Revs move to win

Revs at 1 and 2 move to \emptyset.

For $3 \leq j \leq r$, the rev at j moves to jd.

A spy from some j with $4 \leq j \leq r$ must move to guard \emptyset.
Revs move to win

Revs at 1 and 2 move to \emptyset.

For $3 \leq j \leq r$, the rev at j moves to jd.

A spy from some j with $4 \leq j \leq r$ must move to guard \emptyset.

But, revs at $3d$ and jd threaten $3jd$ on next move, and no other spy can reach a neighbor of $3jd$ now.
Smaller dimensions

When $d > r$, revs beat $r - 2$ spies on Q_d when $m = 2$. On smaller hypercubes, revs do almost as well.
Smaller dimensions

When $d > r$, revs beat $r - 2$ spies on Q_d when $m = 2$. On smaller hypercubes, revs do almost as well.

Thm. If $(d - 1)2^{\lfloor d/11 \rfloor} \geq r$, then r revs beat $r - \left\lceil \frac{r}{d-1} \right\rceil - 1$ spies on Q_d when $m = 2$.
Smaller dimensions

When $d > r$, revs beat $r - 2$ spies on Q_d when $m = 2$. On smaller hypercubes, revs do almost as well.

Thm. If $(d - 1)2^{\lfloor d/11 \rfloor} \geq r$, then r revs beat $r - \lceil \frac{r}{d-1} \rceil - 1$ spies on Q_d when $m = 2$.

Pf. Idea: Let $t = 2^{\lfloor d/11 \rfloor}$. Let X be a set of t vertices in Q_d such that any two are distance at least 11 apart.
Smaller dimensions

When \(d > r \), revs beat \(r - 2 \) spies on \(Q_d \) when \(m = 2 \). On smaller hypercubes, revs do almost as well.

Thm. If \((d - 1)2^{\lfloor d/11 \rfloor} \geq r\), then \(r \) revs beat \(r - \left\lfloor \frac{r}{d-1} \right\rfloor - 1 \) spies on \(Q_d \) when \(m = 2 \).

Pf. Idea: Let \(t = 2^{\lfloor d/11 \rfloor} \). Let \(X \) be a set of \(t \) vertices in \(Q_d \) such that any two are distance at least 11 apart.

Allocate \(r_i \) revolutionaries to each \(x_i \in X \), where \(r_i < d \). Using \(x_i \) as \(\emptyset \), they play the earlier strategy around \(x_i \).
Smaller dimensions

When $d > r$, revs beat $r - 2$ spies on Q_d when $m = 2$. On smaller hypercubes, revs do almost as well.

Thm. If $(d - 1)2^{\lfloor d/11 \rfloor} \geq r$, then r revs beat $r - \left\lfloor \frac{r}{d-1} \right\rfloor - 1$ spies on Q_d when $m = 2$.

Pf. Idea: Let $t = 2^{\lfloor d/11 \rfloor}$. Let X be a set of t vertices in Q_d such that any two are distance at least 11 apart. Allocate r_i revolutionaries to each $x_i \in X$, where $r_i < d$. Using x_i as \emptyset, they play the earlier strategy around x_i. At least $r_i - 1$ spies are needed to avoid losing near x_i.
Smaller dimensions

When $d > r$, revs beat $r - 2$ spies on Q_d when $m = 2$. On smaller hypercubes, revs do almost as well.

Thm. If $(d - 1)2^{\lfloor d/11 \rfloor} \geq r$, then r revs beat $r - \left\lceil \frac{r}{d-1} \right\rceil - 1$ spies on Q_d when $m = 2$.

Pf. Idea: Let $t = 2^{\lfloor d/11 \rfloor}$. Let X be a set of t vertices in Q_d such that any two are distance at least 11 apart.

Allocate r_i revolutionaries to each $x_i \in X$, where $r_i < d$. Using x_i as \emptyset, they play the earlier strategy around x_i. At least $r_i - 1$ spies are needed to avoid losing near x_i. Distance 11 is far enough to prevent spies working at x_j from helping at x_i fast enough.
Smaller dimensions

When \(d > r \), revs beat \(r - 2 \) spies on \(Q_d \) when \(m = 2 \). On smaller hypercubes, revs do almost as well.

Thm. If \((d - 1)2^{\lfloor d/11 \rfloor} \geq r\), then \(r \) revs beat \(r - \left\lceil \frac{r}{d-1} \right\rceil - 1 \) spies on \(Q_d \) when \(m = 2 \).

Pf. Idea: Let \(t = 2^{\lfloor d/11 \rfloor} \). Let \(X \) be a set of \(t \) vertices in \(Q_d \) such that any two are distance at least 11 apart.

Allocate \(r_i \) revolutionaries to each \(x_i \in X \), where \(r_i < d \). Using \(x_i \) as \(\emptyset \), they play the earlier strategy around \(x_i \).

At least \(r_i - 1 \) spies are needed to avoid losing near \(x_i \).

Distance 11 is far enough to prevent spies working at \(x_j \) from helping at \(x_i \) fast enough.

\[\therefore \text{revs win against fewer than } r - t \text{ spies.} \]
Smaller dimensions

When $d > r$, revs beat $r - 2$ spies on Q_d when $m = 2$. On smaller hypercubes, revs do almost as well.

Thm. If $(d - 1)2^{\lfloor d/11 \rfloor} \geq r$, then r revs beat $r - \left\lceil \frac{r}{d-1} \right\rceil - 1$ spies on Q_d when $m = 2$.

Pf. Idea: Let $t = 2^{\lfloor d/11 \rfloor}$. Let X be a set of t vertices in Q_d such that any two are distance at least 11 apart. Allocate r_i revolutionaries to each $x_i \in X$, where $r_i < d$. Using x_i as \emptyset, they play the earlier strategy around x_i. At least $r_i - 1$ spies are needed to avoid losing near x_i. Distance 11 is far enough to prevent spies working at x_j from helping at x_i fast enough.

∴ revs win against fewer than $r - t$ spies.

Since $(d - 1)t \geq r$, the revs win if $s < r - \frac{r}{d-1}$.

\[\square \]
Complete k-partite graphs

Let $G_k = K_{n,\ldots,n}$ with k parts and $n \geq r$.
Complete k-partite graphs

Let $G_k = K_{n,...,n}$ with k parts and $n \geq r$.

Spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.
Complete k-partite graphs

Let $G_k = K_{n,\ldots,n}$ with k parts and $n \geq r$.

Spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.

When $k \geq m$, revs win when s is "not much smaller".
Complete k-partite graphs

Let $G_k = K_{n,\ldots,n}$ with k parts and $n \geq r$.

Spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.

When $k \geq m$, revs win when s is "not much smaller".
Thus G_k is a "spy-not-too-bad" graph.
Complete \(k \)-partite graphs

Let \(G_k = K_{n,\ldots,n} \) with \(k \) parts and \(n \geq r \).

Spies win on \(G_k \) if \(s \geq \frac{k}{k-1} \frac{r}{m} + k \).

When \(k \geq m \), revs win when \(s \) is "not much smaller".

Thus \(G_k \) is a "spy-not-too-bad" graph.

Def. In a game on \(G_k \), an \(i \)-swarm sends all revs to part \(i \), filling unguarded partial meetings to size \(m \) and then making additional meetings of size \(m \).
Complete k-partite graphs

Let $G_k = K_{n,...,n}$ with k parts and $n \geq r$.

Spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.

When $k \geq m$, revs win when s is "not much smaller". Thus G_k is a "spy-not-too-bad" graph.

Def. In a game on G_k, an i-swarm sends all revs to part i, filling unguarded partial meetings to size m and then making additional meetings of size m.

Thm. If $k \geq m$ and $k \mid r$, then at least $\frac{k}{k-1} \frac{r}{m+c} - k$ spies are needed to win on G_k, where $c = 1/(k-1)$.
Complete k-partite graphs

Let $G_k = K_{n,\ldots,n}$ with k parts and $n \geq r$.

Spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.

When $k \geq m$, revs win when s is "not much smaller". Thus G_k is a "spy-not-too-bad" graph.

Def. In a game on G_k, an i-swarm sends all revs to part i, filling unguarded partial meetings to size m and then making additional meetings of size m.

Thm. If $k \geq m$ and $k \mid r$, then at least $\left(\frac{k}{k-1} \frac{r}{m+c} \right) - k$ spies are needed to win on G_k, where $c = 1/(k-1)$.

Idea: Let $t = r/k$. Revs initially at t verts. in each part.
Complete k-partite graphs

Let $G_k = K_{n,\ldots,n}$ with k parts and $n \geq r$.

Spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.

When $k \geq m$, revs win when s is "not much smaller".

Thus G_k is a "spy-not-too-bad" graph.

Def. In a game on G_k, an i-swarm sends all revs to part i, filling unguarded partial meetings to size m and then making additional meetings of size m.

Thm. If $k \geq m$ and $k \mid r$, then at least $\frac{k}{k-1} \frac{r}{m+c} - k$ spies are needed to win on G_k, where $c = 1/(k-1)$.

Idea: Let $t = r/k$. Revs initially at t verts. in each part. Let s_i be the initial #spies in part i (they sit on revs.).
Complete k-partite graphs

Let $G_k = K_{n, \ldots, n}$ with k parts and $n \geq r$.

Spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.

When $k \geq m$, revs win when s is "not much smaller".

Thus G_k is a "spy-not-too-bad" graph.

Def. In a game on G_k, an i-swarm sends all revs to part i, filling unguarded partial meetings to size m and then making additional meetings of size m.

Thm. If $k \geq m$ and $k \mid r$, then at least $\frac{k}{k-1} \frac{r}{m+c} - k$ spies are needed to win on G_k, where $c = 1/(k - 1)$.

Idea: Let $t = r/k$. Revs initially at t verts. in each part.

Let s_i be the initial # spies in part i (they sit on revs.).

How many spies are needed to avoid losing by swarm?
Case 1: $s_i > t$ for some i; revs swarm to part i. New meetings use m incoming revs., not guardable by spies from part i. At least $\lfloor (k-1)t/m \rfloor$ additional spies must come from other parts, so

$$s \geq s_i + \left\lfloor \frac{(k-1)t}{m} \right\rfloor \geq t \left[1 + \frac{k-1}{m} \right] = \frac{k-1+m}{k} \frac{r}{m}.$$
Lower Bound (Rev strategy)

Case 1: $s_i > t$ for some i; revs swarm to part i.
New meetings use m incoming revs., not guardable by spies from part i. At least $\lceil (k-1)t/m \rceil$ additional spies must come from other parts, so

$$s \geq s_i + \left\lfloor \frac{(k-1)t}{m} \right\rfloor \geq t \left[1 + \frac{k-1}{m} \right] = \frac{k-1+m}{k} \cdot \frac{r}{m}.$$

Case 2: $s_i \leq t$ for all i.
Part i has $t - s_i$ partial meetings; i-swarm can fill them (since $s_i \geq 0$) if $(k-1)t \geq t(m-1)$, implied by $k \geq m$.
Lower Bound (Rev strategy)

Case 1: $s_i > t$ for some i; revs swarm to part i. New meetings use m incoming revs., not guardable by spies from part i. At least $\lfloor (k - 1)t/m \rfloor$ additional spies must come from other parts, so

$$s \geq s_i + \left\lfloor \frac{(k-1)t}{m} \right\rfloor \geq t \left\lfloor 1 + \frac{k-1}{m} \right\rfloor = \frac{k-1+m}{k} \frac{r}{m}.$$

Case 2: $s_i \leq t$ for all i. Part i has $t - s_i$ partial meetings; i-swarm can fill them (since $s_i \geq 0$) if $(k - 1)t \geq t(m - 1)$, implied by $k \geq m$.

Hence spies from other parts must guard $\lfloor (r - s_i)/m \rfloor$ new meetings. Summing $s - s_i \geq \frac{r-s_i-m+1}{m}$ yields

$$(k-1+\frac{1}{m})s > k \frac{r-m+1}{m}, \text{ so } s > \frac{k(r-m+1)}{m(k-1)+1} > \frac{k}{k-1} \frac{r}{m+c} - k.$$
Lower Bound (Rev strategy)

Case 1: $s_i > t$ for some i; revs swarm to part i.
New meetings use m incoming revs., not guardable by spies from part i. At least $\left\lfloor (k - 1)t/m \right\rfloor$ additional spies must come from other parts, so

$$s \geq s_i + \left\lfloor \frac{(k-1)t}{m} \right\rfloor \geq t \left[1 + \frac{k-1}{m} \right] = \frac{k-1+m}{k} \frac{r}{m}.$$

Case 2: $s_i \leq t$ for all i.
Part i has $t - s_i$ partial meetings; i-swarm can fill them (since $s_i \geq 0$) if $(k - 1)t \geq t(m - 1)$, implied by $k \geq m$.

Hence spies from other parts must guard $\left\lfloor (r - s_i)/m \right\rfloor$ new meetings. Summing $s - s_i \geq \frac{r - s_i - m + 1}{m}$ yields

$$(k-1+\frac{1}{m})s > kr - m + 1, \text{ so } s > \frac{k(r-m+1)}{m(k-1)+1} > \frac{k}{k-1} \frac{r}{m+c} - k.$$

When $k \geq m$, the requirement from Case 2 is weaker (better for spies) than from Case 1.
Upper Bound (Spy strategy)

Thm. For $k, m \in \mathbb{N}$, spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.
Upper Bound (Spy strategy)

Thm. For $k, m \in \mathbb{N}$, spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.

Idea: Give strategy for this many spies to last forever, by condition that prevents revs winning on next round.
Upper Bound (Spy strategy)

Thm. For $k, m \in \mathbb{N}$, spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.

Idea: Give strategy for this many spies to last forever, by condition that prevents revs winning on next round.

Def. The m revs in an m-meeting and one spy on them are **bound**; others are **free**. Currently in part i, let $r_i = \#\text{free revs}, s_i = \#\text{free spies}$. Also $\hat{r} = \text{total } \#\text{free revs}, \hat{s} = \text{total } \#\text{free spies}$.
Upper Bound (Spy strategy)

Thm. For \(k, m \in \mathbb{N} \), spies win on \(G_k \) if \(s \geq \frac{k}{k-1} \frac{r}{m} + k \).

Idea: Give strategy for this many spies to last forever, by condition that prevents revs winning on next round.

Def. The \(m \) revs in an \(m \)-meeting and one spy on them are bound; others are free. Currently in part \(i \), let \(r_i = \# \text{free revs}, \ s_i = \# \text{free spies} \). Also \(\hat{r} = \text{total \#free revs}, \ \hat{s} = \text{total \#free spies} \).

Def. A round ends **stable** if (1) all \(m \)-mtgs are guarded, and (2) \(\hat{s} - s_i \geq \frac{\hat{r}}{m} \) for all \(i \).
Upper Bound (Spy strategy)

Thm. For $k, m \in \mathbb{N}$, spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.

Idea: Give strategy for this many spies to last forever, by condition that prevents revs winning on next round.

Def. The m revs in an m-meeting and one spy on them are bound; others are free. Currently in part i, let $r_i = \#$free revs, $s_i = \#$free spies. Also $\hat{r} = \text{total } \#$free revs, $\hat{s} = \text{total } \#$free spies.

Def. A round ends **stable** if (1) all m-mtgs are guarded, and (2) $\hat{s} - s_i \geq \hat{r}/m$ for all i.

Lem. If a round ends stable, then the revs cannot win on the next round.
Upper Bound (Spy strategy)

Thm. For \(k, m \in \mathbb{N} \), spies win on \(G_k \) if \(s \geq \frac{k}{k-1} \frac{r}{m} + k \).

Idea: Give strategy for this many spies to last forever, by condition that prevents revs winning on next round.

Def. The \(m \) revs in an \(m \)-meeting and one spy on them are **bound**; others are **free**. Currently in part \(i \), let \(r_i = \# \text{free revs}, \quad s_i = \# \text{free spies} \). Also \(\hat{r} = \text{total } \# \text{free revs}, \quad \hat{s} = \text{total } \# \text{free spies} \).

Def. A round ends **stable** if (1) all \(m \)-mtgs are guarded, and (2) \(\hat{s} - s_i \geq \hat{r}/m \) for all \(i \).

Lem. If a round ends stable, then the revs cannot win on the next round.

Pf. Hall’s Theorem yields a matching that covers new \(m \)-meetings with free spies who can move there.
Spy Strategy:
(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.
Spy Strategy:
(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.
(2) Move the \hat{s} spies that are now free; distribute them equally among the k parts (so $|s_i - \hat{s}/m| < 1$ for all i).
Spy Strategy:

(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

(2) Move the \hat{s} spies that are now free; distribute them equally among the k parts (so $|s_i - \hat{s}/m| < 1$ for all i).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning $\hat{s} - s_i \geq \frac{r}{m}$)
Spy Strategy:

(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

(2) Move the \hat{s} spies that are now free; distribute them equally among the k parts (so $|s_i - \hat{s}/m| < 1$ for all i).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning $\hat{s} - s_i \geq \frac{\hat{r}}{m}$)

Pf. It suffices to have $s_j \geq \frac{\hat{r}}{m(k-1)}$ for each j,
Upper Bound (Spy strategy)

Spy Strategy:
(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

(2) Move the \hat{s} spies that are now free; distribute them equally among the k parts (so $|s_i - \hat{s}/m| < 1$ for all i).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning $\hat{s} - s_i \geq \frac{\hat{r}}{m}$)

Pf. It suffices to have $s_j \geq \frac{\hat{r}}{m(k-1)}$ for each j, so make $\frac{s}{k} \geq \frac{\hat{r}}{m(k-1)} + 1$;
Upper Bound (Spy strategy)

Spy Strategy:

(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

(2) Move the \hat{s} spies that are now free; distribute them equally among the k parts (so $|s_i - \hat{s}/m| < 1$ for all i).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning $\hat{s} - s_i \geq \frac{\hat{r}}{m}$)

Pf. It suffices to have $s_j \geq \frac{\hat{r}}{m(k-1)}$ for each j,

so make $\frac{\hat{s}}{k} \geq \frac{\hat{r}}{m(k-1)} + 1$; that is, $\hat{s} \geq \frac{k}{k-1} \frac{\hat{r}}{m} + k.$
Upper Bound (Spy strategy)

Spy Strategy:
(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

(2) Move the \(\hat{s} \) spies that are now free; distribute them equally among the \(k \) parts (so \(|s_i - \hat{s}/m| < 1 \) for all \(i \)).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning \(\hat{s} - s_i \geq \frac{\hat{r}}{m} \))

Pf. It suffices to have \(s_j \geq \frac{\hat{r}}{m(k-1)} \) for each \(j \), so make \(\frac{\hat{s}}{k} \geq \frac{\hat{r}}{m(k-1)} + 1 \); that is, \(\hat{s} \geq \frac{k}{k-1} \frac{\hat{r}}{m} + k \).

Given: \(s \geq \frac{k}{k-1} \frac{r}{m} + k. \)
Spy Strategy:
(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

(2) Move the \(\hat{s} \) spies that are now free; distribute them equally among the \(k \) parts (so \(|s_i - \hat{s}/m| < 1 \) for all \(i \)).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning \(\hat{s} - s_i \geq \frac{\hat{r}}{m} \))

Pf. It suffices to have \(s_j \geq \frac{\hat{r}}{m(k-1)} \) for each \(j \), so make \(\frac{\hat{s}}{k} \geq \frac{\hat{r}}{m(k-1)} + 1 \); that is, \(\hat{s} \geq \frac{k}{k-1} \frac{\hat{r}}{m} + k \).

Given: \(s \geq \frac{k}{k-1} \frac{r}{m} + k \). Subtract \(s - \hat{s} = (r - \hat{r})/m \)
Upper Bound (Spy strategy)

Spy Strategy:
(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.
(2) Move the \hat{s} spies that are now free; distribute them equally among the k parts (so $|s_i - \hat{s}/m| < 1$ for all i).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning $\hat{s} - s_i \geq \frac{\hat{r}}{m}$)

Pf. It suffices to have $s_j \geq \frac{\hat{r}}{m(k-1)}$ for each j,
so make $\hat{s}/k \geq \frac{\hat{r}}{m(k-1)} + 1$; that is, $\hat{s} \geq \frac{k}{k-1} \frac{\hat{r}}{m} + k$.

Given: $s \geq \frac{k}{k-1} \frac{r}{m} + k$. Subtract $s - \hat{s} = (r - \hat{r})/m$

to get $\hat{s} \geq \frac{1}{k-1} \frac{r}{m} + \frac{\hat{r}}{m} + k$
Spy Strategy:

1. After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

2. Move the \(\hat{s} \) spies that are now free; distribute them equally among the \(k \) parts (so \(|s_i - \hat{s}/m| < 1\) for all \(i \)).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning \(\hat{s} - s_i \geq \frac{\hat{r}}{m} \))

Pf. It suffices to have \(s_j \geq \frac{\hat{r}}{m(k-1)} \) for each \(j \), so make \(\frac{\hat{s}}{k} \geq \frac{\hat{r}}{m(k-1)} + 1 \); that is, \(\hat{s} \geq \frac{k\hat{r}}{k-1m} + k \).

Given: \(s \geq \frac{k}{k-1} \frac{r}{m} + k \). Subtract \(s - \hat{s} = (r - \hat{r})/m \) to get \(\hat{s} \geq \frac{1}{k-1} \frac{r}{m} + \frac{\hat{r}}{m} + k \geq \frac{k}{k-1} \frac{\hat{r}}{m} + k \).
Complete Bipartite Graphs

\[m \geq k = 2. \] Proofs more difficult, but same approach.
Complete Bipartite Graphs

\(m \geq k = 2 \). Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small \(s \)).
Complete Bipartite Graphs

\[m \geq k = 2. \] Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small \(s \)).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large \(s \)).
Complete Bipartite Graphs

\(m \geq k = 2 \). Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small \(s \)).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large \(s \)).

Thm. \((m = 2) \) Spies win if and only if \(s \geq \frac{7r}{10} = \frac{7}{5} \frac{r}{m} \).
Complete Bipartite Graphs

\(m \geq k = 2 \). Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small \(s \)).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large \(s \)).

Thm. \((m = 2)\) Spies win if and only if \(s \geq \frac{7r}{10} = \frac{7}{5} \frac{r}{m} \).

Thm. \((m = 3)\) Spies win if and only if \(s \geq \frac{r}{2} = \frac{3}{2} \frac{r}{m} \).
Complete Bipartite Graphs

$m \geq k = 2$. Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small s).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large s).

Thm. ($m = 2$) Spies win if and only if $s \geq \frac{7r}{10} = \frac{7}{5} \frac{r}{m}$.

Thm. ($m = 3$) Spies win if and only if $s \geq \frac{r}{2} = \frac{3}{2} \frac{r}{m}$.

Thm. ($m \geq 4$, fixed) Spies win only if $s > \frac{3'}{2} \frac{r}{m} - 4m$.
Complete Bipartite Graphs

$m \geq k = 2$. Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small s).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large s).

Thm. ($m = 2$) Spies win if and only if $s \geq \frac{7r}{10} = \frac{7}{5} \frac{r}{m}$.

Thm. ($m = 3$) Spies win if and only if $s \geq \frac{r}{2} = \frac{3}{2} \frac{r}{m}$.

Thm. ($m \geq 4$, fixed) Spies win only if $s > \frac{3'}{2} \frac{r}{m} - 4m$.

Thm. For large fixed m, spies win if $s > \left(1 + \frac{1}{\sqrt{3}}\right) \frac{r}{m}$.
Complete Bipartite Graphs

$m \geq k = 2$. Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small s).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large s).

Thm. ($m = 2$) Spies win if and only if $s \geq \frac{7r}{10} = \frac{7}{5} \frac{r}{m}$.

Thm. ($m = 3$) Spies win if and only if $s \geq \frac{r}{2} = \frac{3}{2} \frac{r}{m}$.

Thm. ($m \geq 4$, fixed) Spies win only if $s > \frac{3'}{2} \frac{r}{m} - 4m$.

Thm. For large fixed m, spies win if $s > \left(1 + \frac{1}{\sqrt{3}}\right) \frac{r}{m}$.

• For large fixed m, the threshold t for the number of spies needed to win satisfies $1.5 \frac{r}{m} - 4m < t < 1.58 \frac{r}{m}$.
Complete Bipartite Graphs

$m \geq k = 2$. Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small s).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large s).

Thm. ($m = 2$) Spies win if and only if $s \geq \frac{7r}{10} = \frac{7}{5} \frac{r}{m}$.

Thm. ($m = 3$) Spies win if and only if $s \geq \frac{r}{2} = \frac{3}{2} \frac{r}{m}$.

Thm. ($m \geq 4$, fixed) Spies win only if $s > \frac{3'}{2} \frac{r}{m} - 4m$.

Thm. For large fixed m, spies win if $s > \left(1 + \frac{1}{\sqrt{3}}\right) \frac{r}{m}$.

- For large fixed m, the threshold t for the number of spies needed to win satisfies $1.5 \frac{r}{m} - 4m < t < 1.58 \frac{r}{m}$.

** Conj.** For fixed m, the threshold for the number of spies needed to win is asymptotic to $1.5 \frac{r}{m}$.