Math 502/Test 1

SHOW ALL WORK!!! NO CREDIT OTHERWISE! LOOK OR MORE PROBLEMS ON THE BACK!

1. Decide if the following statements are True or False. You will get 3 points for deciding if the statement is T/F and 3 points for a correct explanation.
 - If each of A_1, A_2, \ldots is dense in \mathbb{R}, then $\bigcap_{n=1}^{\infty} A_i$ is dense in \mathbb{R}.
 - A set which has no interior points is nowhere dense.
 - Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ has derivatives of all order. If $f^{(n)}(0) = 0$ for all $n = 0, 1, 2, \ldots$, then f is identically zero.
• There is a differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that \{f'(x) : x \in \mathbb{R}\} is an unbounded set.

• Suppose $f : [-1, 1] \to \mathbb{R}$ is continuous. Furthermore, assume that $f'(x) < 0$ for all $-1 \leq x < 0$ and $f'(x) > 0$ for all $0 < x \leq 1$. Then $f'(0) = 0$.

2. Explain why $\mathbb{R} \setminus \mathbb{Q}$ is not meager.

3. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ such that $f'_+(0) = \infty$ and $f'_-(0) = 2$.
4. Show that the following function is continuous at 0 but not differentiable at any point.

\[f(x) = 0 \text{ if } x \text{ is rational and } f(x) = x \text{ if } x \text{ is irrational.} \]

5. Exhibit the Taylor’s polynomial about \(x = 0 \) of degree \(n \) for the function \(f(x) = \cos(x) \). Find \(n \) so that \(|R_n(x)| < 10^{-6} \) for all \(x \in [0, 3] \).

6. Prove that if \(f \) is differentiable at \(x \), then \(f \) is continuous at \(x \).
7. State the Mean Value Theorem and use it to prove that if \(f'(x) > 0 \) for all \(x \in (0, 1) \) then \(f \) is strictly increasing on \((0, 1)\).

8. Suppose \(f : [0, \infty) \to \mathbb{R} \) has the property that \(f'(x) > 0 \) for all \(x \geq 0 \). Show that if \(\lim_{x \to \infty} f(x) \) is some finite number, then there is an increasing sequence \(\{x_n\} \) such that \(\lim_{n \to \infty} f'(x_n) = 0 \).
9. (Required for grad students. Bonus for undergrads.) Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable at every point. Moreover, assume that $\lim_{x \to \infty} f'(x) = 0$. Does this imply that $\lim_{x \to \infty} f(x)$ exists and is finite?