1. Determine whether the following statements are true or false. Give a complete justification for your answer. You will receive 4 pts for each correct answer and 3 pts for a correct explanation.

- S_5 is cyclic.

- \mathbb{Z}_{80} has four elements of order 8.

- Every infinite cyclic group has infinitely many generators.

- There is a finite group G and $a, b \in G$ such that $o(ab) \neq o(a) \cdot o(b)$.
• Let G be a group and $Z(G)$ be the center of G. $Z(G) = G$ iff G is abelian.

2. Prove that every cyclic group is abelian.

3. Let G be a group and $a, x \in G$. Show that $o(xax^{-1}) = o(a)$.

4. Consider the following permutation.

\[
\sigma = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 3 & 4 & 5 & 6 & 1 & 8 & 7
\end{bmatrix}
\]

- Write \(\sigma \) as the product of disjoint cycles and then as the product of 2-cycles.

- What is the order of \(\sigma \).

5. Decide if \([2]\) is a generator of \(\mathbb{U}(25) \).

6. Let \(G \) be a group and \(H \) be a subgroup of \(G \). Let \(N = \{x \in G : xhx^{-1} \in H \text{ for all } h \in H\} \). Show that \(N \) is a subgroup of \(G \).
7. 10 pts. Extra Credit Problem for the Undergrads and required problem for the Grads.
Let \(G \) be a group and \(a, b \in G \) such that \(o(a) = 10 \) and \(o(b) = 13 \).
Show that \(<a> \cap = \{e\} \).

8. 10 pts. Bonus for everyone. Show that no group is the union of two proper subgroups.