1. Determine whether the following statements are true or false. You will get 4 points for determining correctly whether the statement is true or false and 4 points for a correct explanation.

(a) Let R be a finite commutative ring with identity and $I \subseteq R$ be a prime ideal of R. Then, I is a maximal ideal of R.

(b) If F is a field, then every ideal of $F[x]$ is a principal ideal domain.

(c) There is an infinite field F which contains an isomorphic copy of \mathbb{Z}_2 as well as \mathbb{Q}.

(d) Let $I = \{ f(x) \in \mathbb{Z}[x] : f(0) = 0 \}$. Then, I is a prime ideal of $\mathbb{Z}[x]$.
(e) There is a ring isomorphism from $\mathbb{R}[x]/ < x^2 + 1 >$ to \mathbb{C}, the set of complex numbers.

2. Give an example of each of the following. If it does not exist, state why. Each one is worth 8 points.

(a) A finite noncommutative ring without an identity.

(b) An integral domain which is not a principal ideal domain.

(c) A ring R and a polynomial $p(x) \in R[x]$ of degree 2 such that $p(x)$ has more than 2 roots over R.

(d) A ring homomorphism from \mathbb{Z} onto $5\mathbb{Z}$.
(e) An infinite integral domain which has characteristic 3.

3. Consider $R = \mathbb{Z}_2[x]$ and $I = \langle x^2 + x + 1 \rangle$. List all the distinct cosets of R/I. Then, find the multiplicative inverse of $[x + 1]$ in R/I.

4. Show that the only ideals of a field F are $\{0\}$ and F itself.
5. **Required for Graduate Students. Bonus for Undergrads.** Let F be a finite field with n elements. Show that $x^{n-1} = 1$ for all nonzero $x \in F$.

6. **Bonus for everyone.** Suppose a, b belong to a field F which has order 2^n for some odd integer n and that $a^2 + ab + b^2 = 0$. Prove that $a = 0$ and $b = 0$.