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Abstract. We propose two novel mathematical models with impulsive injection of insulin or its
analogues for type 1 and type 2 diabetes mellitus. One model incorporates with periodic impulsive
injection of insulin. We analytically showed the existence and uniqueness of a positive globally
asymptotically stable periodic solution for type 1 diabetes, which implies that the perturbation due
to insulin injection will not disturb the homeostasis of plasma glucose concentration. We also showed
that the system is uniformly permanent for type 2 diabetes, that is, the glucose concentration level
is uniformly bounded above and below. The other model has the feature that determines the insulin
injection by closely monitoring the glucose level when the glucose level reaches or passes a predefined
but adjustable threshold value. We analytically proved the existence and stability of the order one
periodic solution, which ensures that the perturbation by the injection in such an automated way can
make the blood glucose concentration under control. Our numerical analyses confirm and further
enhance the usefulness and robustness of our models. The first model has implications in clinic
that the glucose level of a diabetic can be controlled within desired level by adjusting the values of
two model parameters, injection period and injection dose. The second model is probably the first
attempt to conquer some critical issues in the design of artificial pancreas with closed-loop approach.
For both cases, our numerical analysis reveal that smaller but shorter insulin delivery therapy is
more efficient and effective. This can be significant in design and development of insulin pump and
artificial pancreas.

1. Introduction. Diabetes mellitus is a disease, in which plasma glucose con-
centration level mostly remains above normal range. Diabetes mellitus is typically
classified as type 1 diabetes, type 2 diabetes, and gestational diabetes. Type 1 di-
abetes is mainly due to that almost all β-cells in pancreas are lost or dysfunctional
and thus no insulin can be synthesized and secreted from pancreas. Type 2 diabetes
is probably due to the disfunction of the glucose-insulin regulatory system, for ex-
ample, insulin resistance, so that insulin cannot be utilized sufficiently by cells to
uptake glucose. To compensate the insulin resistance, β-cells need to synthesize more
insulin for the ineffective glucose utilization. Typical diagnostic in type 2 diabetes is
both hyperglycemia and hyperinsulinmia. It has been a long history for researchers
and medical doctors to find the mechanisms how the system becomes dysfunctional
and how to provide effective and efficient therapies for diabetic patients. The most
common regimens are inject insulin analogues subcutaneously either daily or contin-
uously. The continuous subcutaneous insulin infusion (CSII) therapy is achieved by
using insulin pump, a medical device for administration of insulin or its analogues.
The use of insulin pump not only has greatly increased for type 1 diabetes ([18]), also
provides a feasible alternative for type 2 diabetes ([6], [22], [24], [35]) in exogenous
injection of insulin or its analogues. All insulin pumps used by diabetics in daily life
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nowadays follow the so called open loop approach, that is, insulin is injected without
knowledge of plasma glucose level. While these therapies provide important and im-
proved treatments for diabetic patients, however, such regimes change the life styles
of the patients, for example, a patient has to inject insulin manually before or after
meal ingestions to avoid hyperglycemia, and the dose has to be carefully computed
by the carbohydrate to be ingested. A risk in the open loop control is hypoglycemia
episode. In recent years, to improve the life styles or make the life style of the patients
to return back or close to as a normal person, researchers have been making great
efforts in study to develop technology and close the loop, which is called artificial
pancreas ([26], [27]).

The artificial pancreas, which is still in development, is a controller that would
substitute the endocrine functionality of a real and healthy pancreas for diabetic pa-
tients and automatically keep their plasma glucose level under control ([32]). Equipped
with the endocrine functionality of a healthy pancreas, the patient would have been
relieved from the inconvenience in food intake and manual activities for insulin in-
jection. The major impediments for the development of artificial pancreas include
following issues: a) need of reliable predictive models; b) effective and efficient con-
trol algorithms; and c)unreliable real time glucose monitoring system ([27]). However,
the issues a) and b) are not fully solved in open-loop control devices either.

In this paper we propose two models that simulate impulsive injection of insulin
in open-loop control in the fashion of periodic impulses, and in closed-loop control
in view of the feedback from glucose monitoring system. This paper is probably the
first attempt to conquer the issues a) and b) in a mathematical model with impulsive
administration of insulin for the development of artificial pancreas. We shall show the
existence of periodic solutions and its global stability, or permanence of the system,
which ensure the possibility and feasibility of such insulin administrations. The ana-
lytical results and numerical observations have great implications to the development
of artificial pancreas. The paper is organized as follows. In Section 2, we formulate
two impulsive differential equation models to simulate the impulsive insulin injection
for diabetic patients. In Section 3, the qualitative analysis of the model with peri-
odic impulsive injection of insulin analogues is given and the theoretical and practical
regime in controlling glucose level within ideal range is also discussed. In Section
4, we mainly discuss the existence and stability of the order one periodic solution
of the models with state dependent impulsive injection of insulin analogues for dia-
betes mellitus by differential equation geometry theory and the method of successor
functions. While the numerical simulations are carried out in Section 5, which not
only confirm the theoretical results, but also are complementary to those theoretical
results with specific features. We finish this paper by discussing the implications of
these models to the development of artificial pancreas and pointing out future needed
work in improving these models in Section 6.

2. Model formulation. The terminology “artificial pancreas” can be traced to
1974 in [2]. Although the PID (proportional-integrative-derivative) controller is con-
sidered as the best controller when the underlying mechanisms are not completely
known in applications ([5]), model-based control is preferred due to limitations ex-
isted in PID controllers ([7]) and optional control of the system or its stability is not
guaranteed by PID algorithms ([33]). Model-based algorithms require reliable models
that determine the time and the dose for insulin injections. Several such models have
been proposed (e.g., [11], [30], [31]). Such models reflect the physiology of the insulin



MODELING INSULIN IMPULSIVE INJECTION 3

secretion stimulated by glucose and also glucose metabolism with helps of insulin or
exogenously delivered insulin analogues.

The metabolic model proposed by the authors of [11] used data from conducted
closed-loop insulin delivery trials to describe intraday variation of model parameters
and concluded that the model systems do not have to comprise large number of com-
partments and variables, that is, the differential equation system does not need to
be high dimensional. Another type of models closely relevant is to compute glucose
fluxes after meal ingestion, for example, Hovorka et al ([10]), which makes a compu-
tational frame work by combining the maximum likelihood theory and the ordinary
differential equation system.

Two critical and harmful episodes in therapies of insulin administration are hy-
poglycemia caused by over-dosing and hyperglycemia caused by under-dosing. The
model-based algorithms used by insulin pumps and future artificial pancreas should
be designed to avoid such episodes. To carefully determine correct dose of insulin and
right timing of injection, it is necessary to understand the dynamics of the regulations
between glucose and insulin in physiology. Therefore a model based on physiology is
much needed and it is extremely important to study the model analytically so that
the episodes of hyperglycemia and hypoglycemia can be evaded.

To this end, we extend the model proposed by Li et al ([16]) and Li and Kuang
([14]), which models the physiological oscillatory insulin secretion stimulated by el-
evated glucose, and form a new model taking account of impulsive insulin injection
either periodically or by monitoring the plasma glucose concentration level. A sim-
ilar effort has been attempted by Wang et al. ([30], [31]), in which periodic insulin
administration was employed to mimic impulsive injection for the regime of type 1 or
type 2 diabetes mellitus. The model in [16] and [14] is given by

dG

dt
= Gin − f2(G(t))− f3(G(t))f4(I(t)) + f5(I(t− τ2)),

dI

dt
= f1(G(t− τ1))− diI,

(2.1)

where Gin is the estimated average constant rate of glucose input, f1(G(t − τ1)) is
insulin secretion stimulated by elevated glucose concentration with a time delay τ1
caused by complex pathways including chemical-electrical processes, f2(G) is the the
insulin independent glucose uptake, while f3(G)f4(I) stands for the insulin-dependent
glucose utilization, f5(I(t− τ2)) is the hepatic glucose production (HGP) with a time
delay τ2, and, lastly, diI indicates the insulin degradation with di > 0 as the constant
degradation rate. Refer to Fig. 3 in [16] for the shapes and forms of the response
functions f1, f2, f3, f4 and f5, which are originally determined by Sturis et al in [28].

We modify the model diagram given in Fig. 2 in [16] and obtain following model
diagram in Fig. 2 including exogenous insulin injection and the feedback of monitored
glucose concentration level.

In normal subjects, liver is the first organ that the newly secreted insulin arrives,
and the HGP is controlled by insulin. For type 1 and type 2 diabetics using artificial
pancreas, no or little insulin is secreted from β-cells and the exogenous insulin is
injected in subcutance. Therefore the control power of HGP by insulin level is not
significant (refer to Fig. 2). Thus, we assume that the HGP f5(I(t− τ2)) is assumed
to be at a constant rate b > 0. Furthermore, according to [12], the shapes of the
response functions are important instead of the forms. So for simplicity, we assume
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Fig. 2.1. Model Diagram. For type 1 and type 2 diabetes, β-cells do not secrete or secrete
insufficient insulin. Insulin is injected exogenously. Therefore the repression of insulin on hepatic
glucose production and α-cells secreting glucagon is in significant. Insulin injection can be in viewing
the input from glucose monitoring device.

that

f1(x) =
σ1x

2

α2
1 + x2

, f2(x) = σ2x, f3(x) = ax, f4(x) = c+
mx

n+ x
,

where σ1, σ2, α1, a, c,m and n are positive constant parameters that are chosen and
adjusted from [9], [14], [16], [17], [20], [21], [28] and [29] (refer to Table 5.1). Thus we
first formulate following two-compartment model with periodic impulsive injection of
exogenous insulin

dG(t)

dt
= Gin − σ2G− a

(
c+

mI

n+ I

)
G+ b,

dI(t)

dt
=

σ1G
2

α2
1 +G2

− diI(t),

 t 6= kτ,

G(t+) = G(t),

I(t+) = I(t) + σ,

 t = kτ,

(2.2)

with initial condition G(0) = G0 > 0, I(0) = I0 > 0, where σ (µU/ml) > 0 is the
dose in each injection and τ (min) > 0 is the period of the impulsive injection. That
is, σ (µU/ml) insulin is injected as an impulse at discrete times t = kτ , k ∈ Z+ =

{1, 2, 3, . . .}. The moment immediately after the kth injection is denoted as t = kτ+

here.
The feature of Model (2.2) is that insulin is injected subcutaneously periodically,

which is in agreement with how the insulin pump works in an open-loop fashion. We
shall perform analytical analysis in Section 3 for the existence, uniqueness and stability
for the periodic solution with two adjustable parameters σ and τ in a reasonable
region. The periodic solution reflects the dynamics of the glucose and insulin for
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the patients and the clinical doctors can adjust these two parameters to determine
the dose and periodic timing of injection so that the range of plasma glucose can be
controlled within a desirable range.

Although the insulin pumps with open-loop technique have been in the market for
clinical use, the ideal treatment is that the insulin administration can be automatically
determined by the so called closed-loop technique integrated with glucose monitoring
system. This would build an artificial pancreas. In the design of an artificial pancreas,
it is critical to inject insulin or its analogues in observing the glucose level from a
monitoring system, and the injections are prompt. Based on the model (2.1), we here
propose a novel model simulating the injection of insulin as impulse in observing the
glucose level, and investigate the dynamical behaviors. The model is given by

dG(t)

dt
= Gin − σ2G− a

(
c+

mI

n+ I

)
G+ b,

dI(t)

dt
=

σ1G
2

α2
1 +G2

− diI(t),

 G < LG or I > IC ,

G(t+) = G(t),

I(t+) = I(t) + σ,

 G = LG and I ≤ IC ,

(2.3)

with initial condition G(0) = G0 ≤ LG, I(0) = I0, where the constant IC = nk0/(m−
k0), k0 = a−1L−1G (Gin + b− σ2LG)− c, which is determined by the intersection of the

null-cline Gin − σ2G − a
(
c + mI

n+I

)
G + b = 0 and the horizonal line G = LG in the

(I,G)-plane. LG is an adjustable constant threshold value for glucose level – when
the glucose level reaches the threshold value, the impulsive inject of insulin with dose
σ (µU/ml) shall be performed. It is easy to see that the glucose level must decrease
when the insulin level surpass the point IC . We shall show that periodic solution
exists with orbital stability in Section 4.

Remark. For type 1 diabetes, all or most β-cells are dysfunctional and thus
secrete no insulin. So the parameter σ1 = 0 in Model (2.2) and Model (2.3). For
type 2 diabetes, a typical diagnostics of type 2 diabetes is both hyperglycemia and
hyperinsulinmia. Hyperinsulinmia is possibly caused by insulin resistance. Therefore,
σ1 > 0 and a > 0 is small for type 2 diabetes in Model (2.2) and Model (2.3).

3. Analysis of Model (2.2) for open loop control. In this section, we con-
sider the system (2.2) in two cases. We first consider the case σ1 = 0, which means
that pancreas does not release insulin and patients can only rely on exogenous insulin
through subcutaneous injection. We show that the system has a globally asymptoti-
cally stable positive periodic solution. Secondly, we consider the case σ1 > 0, which
means that the pancreas may release some insulin, we show that the system (2.2) is
permanent, that is, the glucose concentration level is bounded above by a constant
and below by another constant.

3.1. Preliminaries. For the sake of convenience, following notations and defi-
nitions are assumed throughout the paper.

Let R+ = [0,∞), R2
+ = {(x, y) ∈ R2

+ : x ≥ 0, y ≥ 0}, Ω = intR2
+. Denote

f = (g, h)T as the mapping defined by the right-hand side of the system (2.2).

Let V : R+ ×R2
+ → R+. Then V is said to belong to class V0 if
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(i) V is continuous on (kτ, (k+1)τ ]×R2
+, and lim(t,y)→(kτ+,x) V (t, y) = V (kτ+, x)

exists and is finite.
(ii) V is locally Lipschitzian in x.
Definition 3.1. Let V ∈ V0, then for V (t, x) ∈ (kτ, (k + 1)τ ] × R2

+, the upper
right derivative of V (t, x) with respect to the impulsive differential system (2.2) is
defined as

D+V (t, x) = lim
h→0

sup
1

h
[V (t+ h, x+ hf(t, x))− V (t, x)].

Definition 3.2. (Bainov and Simeonov [3]) Let r(t) = r(t, t0, x0) be a solution
of the system (2.2) on [t0, t0 + l). r(t) is called the maximal solution of the system
(2.2) if for any solution x(t, t0, x0) of the system (2.2) existing on [t0, t0 + l), then

x(t) ≤ r(t), t ∈ [t0, t0 + l).

The minimal solution ρ(t) can be defined similarly.
Definition 3.3. The system (2.2) is said to be uniformly persistent if there is

a q > 0 (independent of the initial conditions) such that every solution (G(t), I(t)) of
the system (2.2) satisfies

lim
t→∞

inf G(t) ≥ q, lim
t→∞

inf I(t) ≥ q.

Definition 3.4. The system (2.2) is said to be permanent if every solution
(G(t), I(t)) is bounded below by a positive constant and above by another positive
constant, respectively.

Lemma 3.5. Let m ∈ V0, and assume that{
D+m(t) ≤ g(t,m(t)), t 6= tk, k = 1, 2, · · · ,
m(t+k ) ≤ ψk(m(tk)), t = tk, k = 1, 2, · · · ,

where g ∈ C(R+ × R+, R), ψk ∈ C(R,R) and ψk(u) is nondecreasing in u for each
k = 1, 2, · · · . Let r(t) be the maximal solution of the scalar impulsive differential
equation 

u̇ = g(t, u), t 6= tk, k = 1, 2, · · · ,
u(t+k ) = ψk(u(tk)), t = tk, tk > t0 ≥ 0, k = 1, 2, · · · ,
u(t0) = u0,

(3.1)

which exists on [t0,∞). Then, m(t+0 ) ≤ u0 implies that m(t) ≤ r(t) for t ≥ t0.
Similar result can be obtained when all the directions of the inequalities in the lemma
are reversed and ψk(u) is nonincreasing.
Remark. In Lemma 3.5, if g is smooth enough to guarantee the existence and
uniqueness of solution for the initial value problem of the system (3.1), then r(t) is
indeed the unique solution of (3.1).

Next we show the positivity and the boundedness of the solutions of the system
(2.2).

Let x(t) = (G(t), I(t))T be a solution of the system (2.2). Notice that it is
continuous on (kτ, (k+1)τ ], k ∈ Z+, and x(kτ+) = lim

t→kτ+
x(t) exists. Thus the global

existence and uniqueness of solutions of system (2.2) is ensured by the smoothness of
f = (g, h)T ([3], [4]).



MODELING INSULIN IMPULSIVE INJECTION 7

Clearly, dG(t)/dt > 0 when G(t) = 0, and dI(t)/dt ≥ 0 when I(t) = 0. Therefore
we have

Proposition 3.6. (Positivity) Suppose that x(t) is a solution of the system (2.2)
with x(0+) ≥ 0, then x(t) ≥ 0 for all t ≥ 0, and further if x(0+) > 0, then x(t) > 0
for all t > 0.

Following lemma summarizes some basic properties of the linear system (3.2). We
state it below without proof. Interested readers can refer to [25].

Lemma 3.7. The linear system
u̇(t) = a1 − b1u(t), t 6= kτ,
u(t+) = u(t) + p, t = kτ,
u(0+) = u0 ≥ 0,

(3.2)

has a unique positive periodic solution ũ(t) with period τ and for every solution u(t)
of (3.2) such that |u(t)− ũ(t)| → 0 as t→∞, where

ũ(t) =
a1
b1

+
p exp(−b1(t− kτ))

1− exp(−b1τ)
, t ∈ (kτ, (k + 1)τ ], k ∈ Z+,

ũ(0+) =
a1
b1

+
p

1− exp(−b1τ)
,

and ũ(t) is globally asymptotically stable. Besides, we have u(t) = (u(0+)−ũ(0+)) exp(−b1t)+
ũ(t), and lim

t→∞
u(t) = ũ(t). Especially, if a1 = 0, the system (3.2) has a unique pos-

itive periodic solution ũ(t) = p exp(−b1(t− kτ))/(1− exp(−b1τ)) with initial value
ũ(0+) = p/(1− exp(−b1τ)) and ũ(t) is globally asymptotically stable.

Now we can show the boundedness of the solutions of the system (2.2).

Proposition 3.8. (Boundedness) For a solution (G(t), I(t)) of the system (2.2)
with positive initial values, there exists a positive constant M such that G(t) ≤ M
and I(t) ≤M for all t ≥ 0.

Proof. From the first equation of the system (2.2) we have

dG(t)

dt
≤ (Gin + b)− (σ2 + ac)G,

then there exits a positive number M1 > 0 such that G(t) ≤M1, t ≥ 0.

From the second and the forth equation of system (2.2), we have
dI(t)

dt
≤ σ1 − diI(t), t 6= kτ,

I(t+) = I(t) + σ, t = kτ,
I(0) = I0 > 0.

Now we consider the impulsive differential equation
dI2(t)

dt
= σ1 − diI2(t), t 6= kτ,

I2(t+) = I2(t) + σ, t = kτ,
I2(0+) = I0 > 0.

(3.3)
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By Lemma 3.7, we know that the system (3.3) has a globally asymptotically stable
positive periodic solution Ĩ2(t) =

σ1
di

+
σ exp(−di(t− kτ))

1− exp(−diτ)
, t ∈ (kτ, (k + 1)τ ], k ∈ Z+,

Ĩ2(0+) = σ1

di
+ σ

1−exp(−diτ) ,

and the solution of the system (3.3) has the form

I2(t) = (I2(0+)− Ĩ2(0+)) exp(−dit) + Ĩ2(t),

which satisfies lim
t→∞

I2(t) = Ĩ2(t).

By Lemma 3.5, we have

I(t) ≤ I2(t) ≤ σ1
di

+
σ

1− exp(−diτ)
+ |I2(0+)− Ĩ2(0+)|, for t ≥ 0,

then there exits a positive number M ≥M1 such that I(t) ≤M , t ≥ 0.

3.2. Existence and stability of the periodic solution for type 1 diabetes:
the case σ1 = 0. No or very few insulin is released from pancreas for type 1 diabetes.
This can be modeled in Model (2.2) by assuming that the maximum insulin secretion
rate σ1 = 0. In this subsection we prove that a globally asymptotically stable periodic
solution exists if exogenous insulin is injected in the fashion of periodic impulse.

Theorem 3.9. If σ1 = 0, then system (2.2) has a unique positive periodic solution
(G̃(t), Ĩ(t)) with period τ .

Proof. Note that the variable G does not appear in the second equation of the
system (2.2), hence for the dynamics of insulin I(t) we only need to consider the
subsystem 

dI(t)

dt
= −diI(t), t 6= kτ,

I(t+) = I(t) + σ, t = kτ,
I(0) = I0 > 0.

(3.4)

According to Lemma 3.7, the system (3.4) has a unique periodic solution

Ĩ(t) =
σ exp(−di(t− kτ))

1− exp(−diτ)
, t ∈ (kτ, (k + 1)τ ], k ∈ Z+,

with period τ and Ĩ(t) is globally asymptotically stable.

Substituting Ĩ(t) into the first equation of (2.2) for I(t), we have
dG(t)

dt
= (Gin + b)− (σ2 + ac)G− amGĨ(t)

n+ Ĩ(t)
, t 6= kτ,

G(t+) = G(t), t = kτ.

(3.5)

Integrating and solving the equations (3.5) between pulses, we can get, for kτ < t ≤
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(k + 1)τ ,

G(t) = G(kτ) exp
[
−
∫ t

kτ+

(
σ2 + ac+

amĨ(s)

n+ Ĩ(s)

)
ds
]

+ (Gin + b)

∫ t

kτ+

[
exp

(
−
∫ t

u

(
σ2 + ac+

amĨ(s)

n+ Ĩ(s)

)
ds
)]
du

= G(kτ) exp[−(σ2 + ac)(t− kτ)] exp[−am
∫ t

kτ+

Ĩ(s)

n+ Ĩ(s)
ds]

+ (Gin + b)

∫ t

kτ+

{
exp[−(σ2 + ac)(t− u)] exp[−am

∫ t

u

Ĩ(s)

n+ Ĩ(s)
ds]
}
du.

(3.6)

From system (3.4) we get, for kτ+ ≤ b1 ≤ b2 ≤ (k + 1)τ ,

exp
[
− am

∫ b2

b1

Ĩ(t)

n+ Ĩ(t)
dt
]

= exp
[am
di

∫ b2

b1

−diĨ(t)

n+ Ĩ(t)
dt
]

= exp
[am
di

∫ b2

b1

(d ln(n+ Ĩ(t))

dt

)
dt
]

= exp
[am
di

ln
(n+ Ĩ(b2)

n+ Ĩ(b1)

)]
=
(n+ Ĩ(b2)

n+ Ĩ(b1)

) am
di
.

(3.7)

By (3.6) and (3.7), for kτ < t ≤ (k + 1)τ , we get

G(t) = G(kτ) exp[−(σ2 + ac)(t− kτ)]
( n+ Ĩ(t)

n+ Ĩ(0+)

) am
di

+ (Gin + b)

∫ t

kτ+

{
exp[−(σ2 + ac)(t− u)]

( n+ Ĩ(t)

n+ Ĩ(u)

) am
di
}
du

= G(kτ) exp[−(σ2 + ac)(t− kτ)]
( n+ Ĩ(t)

n+ Ĩ(0+)

) am
di

+ (Gin + b)(n+ Ĩ(t))
am
di

∫ t

kτ+

exp[−(σ2 + ac)(t− u)]

(n+ Ĩ(u))
am
di

du,

and

G((k + 1)τ) = G(kτ) exp[−(σ2 + ac)τ ]
( n+ Ĩ(τ)

n+ Ĩ(0+)

) am
di

+ (Gin + b)(n+ Ĩ(τ))
am
di

∫ τ

0+

exp[−(σ2 + ac)(τ − u)]

(n+ Ĩ(u))
am
di

du

, f
(
G(kτ)),

(3.8)

where f(G) = A×G+B and

0 < A = exp[−(σ2 + ac)τ ]
( n+ Ĩ(τ)

n+ Ĩ(0+)

) am
di
< 1,
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and

B = (Gin + b)(n+ Ĩ(τ))
am
di

∫ τ

0+

exp[−(σ2 + ac)(τ − u)]

(n+ Ĩ(u))
am
di

du > 0.

Equation (3.8) has a unique fixed point Ḡ = B
1−A > 0. If 0 < G < Ḡ, then

G < f(G) < Ḡ, and if G > Ḡ, then Ḡ < f(G) < G, so we can know Ḡ is globally
asymptotically stable, and the corresponding period solution G̃(t) of system (3.5) is
also globally asymptotically stable, where

G̃(t) =
B

1−A
exp[−(σ2 + ac)(t− kτ)]

( n+ Ĩ(t)

n+ Ĩ(0+)

) am
di

+ (Gin + b)(n+ Ĩ(t))
am
di

∫ t

kτ+

exp[−(σ2 + ac)(t− u)]

(n+ Ĩ(u))
am
di

du,

for kτ < t ≤ (k + 1)τ and k ∈ Z+, with initial value G̃(0+) = B
1−A .

According to the above discussion, we get that system (2.2) has a unique positive
periodic solution (G̃(t), Ĩ(t)). This completes the proof.

Theorem 3.10. If σ1 = 0, then the positive periodic solution (G̃(t), Ĩ(t)) of the
system (2.2) is globally asymptotically stable.

Proof. we first prove the local stability of the τ−period solution and then prove
that the stability is a global behavior.

The local stability of the τ−period solution (G̃(t), Ĩ(t)) may be determined by
considering the behavior of small-amplitude perturbations (v1(t), v2(t))T of the solu-
tion. Define

G(t) = G̃(t) + v1(t), I(t) = Ĩ(t) + v2(t),

where v1(t), v2(t) are small perturbations, which can be written as(
v1(t)
v2(t)

)
= Φ(t)

(
v1(0)
v2(0)

)
,

where Φ(t) satisfies

dΦ(t)

dt
=

(
−(σ2 + ac)− amĨ(t)

n+Ĩ(t)
−amG̃(t)

n+Ĩ(t)

0 −di

)
Φ(t),

with Φ(0) = I, the identity matrix. The resetting conditions of system (2.2) become(
v1(kτ+)
v2(kτ+)

)
=

(
1 0
0 1

)(
v1(kτ)
v2(kτ)

)
.

Hence, according to the Floquet theory ([3]), if the absolute values of both eigenvalues
of

M =

(
1 0
0 1

)
Φ(τ) = Φ(τ)

are less than one, then the τ -period solution is locally stable.

Φ(τ) =

(
exp(

∫ τ
0

[−(σ2 + ac)− amĨ(t)

n+Ĩ(t)
]dt) ∗

0 e−diτ

)
,
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there is no need to calculate the exact form of (∗) as it is not required in the following
analysis. Then the eigenvalues of M denoted by λ1, λ2 are

λ1 = exp
{∫ τ

0

[
− (σ2 + ac)− amĨ(t)

n+ Ĩ(t)

]
dt
}
< 1 and λ2 = exp(−diτ) < 1.

So the periodic solution (G̃(t), Ĩ(t)) is locally asymptotically stable.
In the following, we show that the periodic solution is a global attractor. Accord-

ing to Proposition 3.8 we have lim
t→∞

I(t) = Ĩ(t). If ε1 and ε2 > 0 are small enough,

then there exists a t1 > 0 such that (1 − ε1)Ĩ(t) < I(t) < (1 + ε2)Ĩ(t) for all t > t1.
From the first equation of the system (2.2), we have

dG

dt
≥ (Gin + b)− (σ2 + ac)G− am(1 + ε2)GĨ(t)

n+ (1 + ε2)Ĩ(t)
,

and

dG

dt
≤ (Gin + b)− (σ2 + ac)G− am(1− ε1)GĨ(t)

n+ (1− ε1)Ĩ(t)
.

Consider the following impulsive equations
dG1

dt
= (Gin + b)− (σ2 + ac)G1 −

am(1 + ε2)G1Ĩ(t)

n+ (1 + ε2)Ĩ(t)
, t 6= kτ,

G1(t+) = G1(t), t = kτ,

(3.9)

and 
dG2

dt
= (Gin + b)− (σ2 + ac)G2 −

am(1− ε1)G2Ĩ(t)

n+ (1− ε1)Ĩ(t)
, t 6= kτ,

G2(t+) = G2(t), t = kτ.

(3.10)

According to the proof of Theorem 3.9, both system (3.9) and system (3.10) have
unique globally asymptotically stable positive periodic solution

G̃1(t) =
B1

1−A1
exp[−(σ2 + ac)(t− kτ)]

( n+ (1 + ε2)Ĩ(t)

n+ (1 + ε2)Ĩ(0+)

) am
di

+ (Gin + b)(n+ (1 + ε2)Ĩ(t))
am
di

∫ t

kτ+

exp[−(σ2 + ac)(t− u)]

(n+ (1 + ε2)Ĩ(u))
am
di

du,

for kτ < t ≤ (k + 1)τ , where

0 < A1 = exp[−(σ2 + ac)τ ]
( n+ (1 + ε2)Ĩ(τ)

n+ (1 + ε2)Ĩ(0+)

) am
di
< 1,

B1 = (Gin + b)(n+ (1 + ε2)Ĩ(τ))
am
di

∫ τ

0+

exp[−(σ2 + ac)(τ − u)]

(n+ (1 + ε2)Ĩ(u))
am
di

du > 0,

and

G̃2(t) =
B2

1−A2
exp[−(σ2 + ac)(t− kτ)]

( n+ (1− ε1)Ĩ(t)

n+ (1− ε1)Ĩ(0+)

) am
di

+ (Gin + b)(n+ (1− ε1)Ĩ(t))
am
di

∫ t

kτ+

exp[−(σ2 + ac)(t− u)]

(n+ (1− ε1)Ĩ(u))
am
di

du,
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for kτ < t ≤ (k + 1)τ , where

0 < A2 = exp[−(σ2 + ac)τ ]
( n+ (1− ε1)Ĩ(τ)

n+ (1− ε1)Ĩ(0+)

) am
di
< 1,

and

B2 = (Gin + b)(n+ (1− ε1)Ĩ(τ))
am
di

∫ τ

0+

exp[−(σ2 + ac)(τ − u)]

(n+ (1− ε1)Ĩ(u))
am
di

du > 0.

By Lemma 3.5, we get, for ε > 0 small enough, there exits a t2 > t1 such that

G̃1(t)− ε < G1(t) ≤ G(t) ≤ G2(t) < G̃2(t) + ε, t > t2,

let ε, ε1, ε2 → 0, we get G̃1(t)→ G̃(t) and G̃2(t)→ G̃(t), then G(t)→ G̃(t) as t→∞.
That completes the proof.

3.3. Permanence for type 2 diabetes: the case σ1 > 0. One diagnostics of
type 2 diabetes and prediabetes is hyperglycemia and hyperinsulinmia, which is most
likely caused by insulin resistance. In this case, pancreatic β-cells still secrete insulin
and might possibly secrete extra insulin to compensate the insulin resistance ([1],
[23]), although the compensation is not enough for type 2 diabetes to uptake glucose.
Therefore the maximum insulin secreting rate σ1 > 0 in Model (2.2). We study the
range of variation for plasma glucose concentration G(t) and insulin concentration
I(t) under impulsive injection of insulin for sufficiently large t > 0. Such qualitative
result has implications in design regimes of exogenous insulin injection, in which both
episodes of hyperglycemia and hypoglycemia can be avoided. We show the following

Theorem 3.11. If σ1 > 0, the system (2.2) is permanent, that is, the solutions
are bounded below and above by some constants.

Proof. From the second and the forth equation of the system (2.2) we have
−diI(t) ≤ dI(t)

dt
≤ σ1 − diI(t), t 6= kτ,

I(t+) = I(t) + σ, t = kτ,
I(0) = I0 > 0.

Now we consider the impulsive differential equation
dI1(t)

dt
= −diI1(t), t 6= kτ,

I1(t+) = I1(t) + σ, t = kτ.

(3.11)

By Lemma 3.7 and Proposition 3.8, both system (3.3) and (3.11) have unique globally
asymptotically stable positive periodic solutions

Ĩ1(t) =
σ exp(−di(t− kτ))

1− exp(−diτ)
, t ∈ (kτ, (k + 1)τ ], k ∈ Z+,

Ĩ2(t) =
σ1
di

+
σ exp(−di(t− kτ))

1− exp(−diτ)
, t ∈ (kτ, (k + 1)τ ], k ∈ Z+.
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According to Lemma 3.5 and Lemma 3.7, for sufficiently small ε > 0, there exists a
t0 > 0, such that

Ĩ1(t)− ε < I1(t) ≤ I(t) ≤ I2(t) < Ĩ2(t) + ε, t ≥ t0,

then we have

Ĩ1(τ) =
σ exp(−diτ)

1− exp(−diτ)
= lim
t→∞

inf Ĩ1(t) ≤ lim
t→∞

inf I(t) ≤ lim
t→∞

sup I(t)

≤ lim
t→∞

sup Ĩ2(t) =
σ1
di

+
σ

1− exp(−diτ)
= Ĩ2(0+).

(3.12)

By (3.12) and the first equation of the system (2.2), we know for t large enough that

(Gin + b)− (σ2 + ac)G−amGĨ2(0+)

n+ Ĩ2(0+)
≤ dG(t)

dt

≤ (Gin + b)− (σ2 + ac)G− amGĨ1(τ)

n+ Ĩ1(τ)
.

(3.13)

Let

G1(σ, τ) ,
Gin + b

σ2 + ac+ amĨ2(0+)

n+Ĩ2(0+)

=
(Gin + b)

(
n+ σ1

di
+ σ

1−exp(−diτ)

)
(σ2 + ac)

(
n+ σ1

di
+ σ

1−exp(−diτ)

)
+ am

(
σ1

di
+ σ

1−exp(−diτ)

) ,
G2(σ, τ) ,

Gin + b

σ2 + ac+ amĨ1(τ)

n+Ĩ1(τ)

=
(Gin + b)

(
n+ σ exp(−diτ)

1−exp(−diτ)

)
(σ2 + ac)

(
n+ σ exp(−diτ)

1−exp(−diτ)

)
+ am

(
σ exp(−diτ)
1−exp(−diτ)

) .

(3.14)

By (3.13) we get

G1(σ, τ) ≤ lim
t→∞

inf G(t) ≤ lim
t→∞

supG(t) ≤ G2(σ, τ). (3.15)

According to (3.12) and (3.15), we know that the system (2.2) is permanent. That
completes the proof.
Remark. The permanence of Model (2.2) qualitatively guarantees that the glu-
cose level is controlled within the designated range so that no hyperglycemia or hy-
poglycemia would occur. With carefully selected parameters, we demonstrate the
dynamical behavior in Section 5 quantitatively by carefully selected parameters in
simulations.

3.4. Keep glucose level under control for type 1 diabetics. In this sub-
section, we propose a theoretical and practical regime for type 1 diabetes to control
glucose level within ideal range by adjusting insulin dose σ and injection period τ .

Almost all β-cells are dysfunctional for type 1 diabetics, which is modeled by set-
ting σ1 = 0 in Model (2.2). In this case, the system (2.2) has a unique boundary equi-
librium E(G0, 0) when exogenous insulin dose σ = 0, where G0 = (Gin + b)/(σ2 + ac).
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In fact, it is easy to see that E(G0, 0) is a globally asymptotically stable node in this
case, which indicates that the glucose level would stay at high level G0.

When the impulsive injection of insulin is set up in Model (2.2), that is, σ > 0,
by (3.14) and (3.15), we have lim

t→∞
supG(t) ≤ G2(σ, τ) < G0, which implies that the

infused insulin makes the concentration of glucose to drop below G2(σ, τ) after certain
time.

Suppose that an ideal range of glucose concentration level is between Gmin and
Gmax, for example, 70mg/dl-160mg/dl after meal ingestion. Without loss of gen-
erality, assume that Gmin ≥ G1(σ, τ) and Gmax ≤ G2(σ, τ). By (3.15), illustrated
below, we are able to control the glucose concentration level within the ideal range
by adjusting the values of injection dose σ and injection period τ .

First suppose that we fix the value of the period of injection τ . Then we can
select σ so that

{
Gmin ≤ G1(σ, τ),
Gmax ≥ G2(σ, τ).

Obviously, both G1(σ, τ) and G2(σ, τ) are decreasing in σ and G1(σ, τ) ≤ G2(σ, τ) for
all σ > 0.

If there exist two points σc ≤ σc such that

{
G1(σc, τ) = Gmin,
G2(σc, τ) = Gmax,

then for this fixed value of the period of injection τ , we can select any dose σ ∈
[σc, σ

c] so that Gmin ≤ G(σ, τ) ≤ Gmax. In other words, we can regulate the glucose
concentration in the ideal range by manipulating the value of σ in the range of [σc, σ

c].

Similarly, if the value of the insulin dose σ is fixed, by (3.14), it is easy to see that
both G1(σ, τ) and G2(σ, τ) are increasing in τ . Suppose that there exist two points
τc ≤ τ c such that

{
G1(σ, τc) = Gmin,
G2(σ, τ c) = Gmax,

then with the fixed insulin dose σ, we can choose any injection period τ ∈ [τc, τ
c] such

that Gmin ≤ G(σ, τ) ≤ Gmax. That is, we can regulate the glucose concentration in
the ideal range by adjusting the value of τ in the range of [τc, τ

c].

Thus the two parameters, τ and σ, define a region when they vary in the ranges
aforementioned. We can select the dose of insulin σ and the period of injection τ in
this region and therefore the plasma glucose is controlled in the range. We draft the
strategy in follows.

Consider (3.14), let

x1(σ, τ) = n+
σ1
di

+
σ

1− exp(−diτ)
. (3.16)
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We have

G1(σ, τ) = G1(x1(σ, τ))

=
x1(σ, τ)

σ2+ac
Gin+b

x1(σ, τ) + am
Gin+b

(x1(σ, τ)− n)

=
x1(σ, τ)

σ2+ac+am
Gin+b

x1(σ, τ)− amn
Gin+b

,
x1(σ, τ)

Cx1(σ, τ)−D
,

(3.17)

where

C =
σ2 + ac+ am

Gin + b
> 0 and D =

amn

Gin + b
> 0.

Similarly, let

x2(σ, τ) = n+
σ exp(−diτ)

1− exp(−diτ)
. (3.18)

By (3.14), we have

G2(σ, τ) = G2(x2(σ, τ)) ,
x2(σ, τ)

Cx2(σ, τ)−D
. (3.19)

Therefore, (3.16) and (3.18) together imply, for any σ ≥ 0 and τ > 0,

x1(σ, τ) > x2(σ, τ).

According to (3.17) and (3.19), we consider the following function

h(x) =
x

Cx−D
, for x >

D

C
.

Clearly, h(x) is decreasing in x. Let{
Gmin ≤ G1(x1(σ, τ)),
Gmax ≥ G2(x2(σ, τ)),

(3.20)

according to (3.15). Thus we obtain the solution of (3.20)
x1(σ, τ) ≤ DGmin

CGmin − 1
= h−1(Gmin) , x01,

x2(σ, τ) ≥ DGmax
CGmax − 1

= h−1(Gmax) , x02.

Notice that both xi(σ, τ), i = 1, 2, are increasing in σ for fixed τ , and are decreas-
ing in τ for fixed σ. Thus in the (σ, τ)-plane, a region can be enclosed by the curves
x1(σ, τ) = x01, and x2(σ, τ) = x02, denoted by W . From (3.17) and (3.18), if insulin
dose σ and injection period τ fall in the region W , i.e., (σ, τ) ∈ W , then glucose
concentration can be controlled in the range [Gmin, Gmax].
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4. Analysis of Model (2.3) for closed-loop control. In this section, we
mainly discuss the existence and stability of the order one periodic solution of Model
(2.3) by the geometric theory of differential equation and the method of successor
functions. Before that, we consider the qualitative characteristics of the system (2.3)
without impulsive effect. In such case, the system (2.3) can be written as


dG(t)

dt
= (Gin + b)− (σ2 + ac)G− amGI

n+ I
= P1(G, I),

dI(t)

dt
=

σ1G
2

α2
1 +G2

− diI(t) = Q1(G, I).

(4.1)

Clearly, for σ1 = 0, the system (4.1) has a unique equilibrium E0(G0, 0), where
G0 = (Gin + b)/(σ2 + ac) and E0 is a global asymptotically stable node with two
separatrixes I = 0 and G = kI, where k = amG0/(n(di − σ2 − ac)).

For σ1 > 0, the system (4.1) has a unique equilibrium E∗(G∗, I∗) with G∗ > 0
and I∗ > 0. The linearized system of (4.1) at the equilibrium E∗(G∗, I∗) is given by

dG(t)

dt
= a11G+ a12I,

dI(t)

dt
= a21G+ a22I,

where a11 = −(σ2 + ac)− amI∗

n+I∗ , a12 = − amnG∗

(n+I∗)2 , a21 =
2α2

1σ1G
∗

(α2
1+(G∗)2)2

, a22 = −di.

Let 4 = (a11 − a22)2 + 4a12a21. When 4 ≥ 0, E∗ is a stable node, and when
4 < 0, E∗ is a stable focus. In other words, E∗ is locally stable. Notice that

∂P1

∂G
+
∂Q1

∂I
= −(σ2 + ac)− amI

n+ I
− di < 0.

Thus there exists no closed orbit for the system (4.1) according to Bendixson Theorem
([19]), and therefore E∗ is global asymptotically stable.

The isocline dG
dt = P1(G, I) = 0 has an asymptotic line G = Gin+b

σ2+ac+am
, Gs.

Thus, in the system (2.3), if LG ≤ Gs, the horizontal lines G = LG would not
intersect with the isocline dG

dt = P1(G, I) = 0, and IC = +∞, which implies that the
trajectory from the initial point below the line G = LG will undergo infinite impulsive
effect and remain in the line G = LG. So we assume that Gs < LG < G0 for the case
σ1 = 0, and Gs < LG < G∗ for the case σ1 > 0 throughout this section. Clinically,
if LG < Gs, the glucose level is probably not in hyperglycemic state; if LG is above
G0 or G∗, some other medical treatment is required to bring the glucose level down
in practice.

4.1. Definitions and notations of the geometric theory of the semi-
continuous dynamical systems . We first introduce some notations and definitions
of the geometric theory of semi-continuous dynamical systems, which will be useful
for the discussion of system (2.3). Definitions 4.1-4.5 and Lemma 4.6 are from Chen
([8]).
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Definition 4.1. Consider the state-dependent impulsive differential equations

dx

dt
= P̄ (x, y),

dy

dt
= Q̄(x, y),

 (x, y) /∈M{x, y},

4x = α(x, y),
4y = β(x, y),

}
(x, y) ∈M{x, y}.

(4.2)

We define the dynamical system consisting of the solution mapping of the system
(4.2) a semi-continuous dynamical system, denoted as (Ω, f, ϕ,M). We require that
the initial point P of the system (4.2) should not be in the set M{x, y}, that is P ∈
Ω = R2

+ \M{x, y}, and the function ϕ is a continuous mapping that satisfies ϕ(M) =
N . Here ϕ is called the impulse mapping, where M{x, y} and N{x, y} represent the
straight lines or curves in the plane R2

+, M{x, y} is called the impulse set, and N{x, y}
is called the phase set.
Remark. For the system (2.3), Ω = {(I,G) : G ≤ LG and 0 ≤ I < ∞}, M =
{(I,G) : G = LG and I ≤ IC}, and for any (I,G) ∈ M , we have ϕ(I,G) = (I +
kσ,G), where k is an integer such that I + kσ > IC , I + (k − 1)σ ≤ IC .

Definition 4.2. For the semi-continuous dynamical system defined by the state-
dependent impulsive differential equations (4.2), the solution mapping f(P, t) : Ω→ Ω
consists of two parts:

(i) Let π(P, t) denote the poincaré map with the initial point P of the following
system 

dx

dt
= P̄ (x, y),

dy

dt
= Q̄(x, y).

If f(P, t) ∩M{x, y} = ∅, then f(P, t) = π(P, t).
(ii) If there exists a time point T1 such that f(P, T1) = H ∈ M{x, y}, ϕ(H) =

ϕ(f(P, T1)) = P1 ∈ N{x, y} (the point H is called the impulse point of P ,
and the point P1 is called the phase point of H) and f(P1, t) ∩M{x, y} = ∅,
then f(P, t) = π(P, T1) + f(P1, t).

Remark. For (ii) in Definition 4.2, if f(P1, t) ∩ M{x, y} 6= ∅, and there exists
a time point T2 such that f(P1, T2) = H1 ∈ M{x, y} and ϕ(H1) = ϕ(f(P1, T2)) =
P2 ∈ N{x, y}, then f(P, t) = π(P, T1) + f(P1, t) = π(P, T1) + π(P1, T2) + f(P2, t).
Iteratively, if f(Pi−1, t) ∩M{x, y} 6= ∅ for i = 2, 3, 4, . . . , k for some k > 1, then

f(P, t) =

k∑
i=1

π(Pi−1, Ti) + f(Pk, t), where P0 = P.

Definition 4.3. If there exists a point P ∈ N{x, y} and a time point T1 such
that f(P, T1) = H ∈M{x, y} and ϕ(H) = ϕ(f(P, T1)) = P ∈ N{x, y}, then f(P, t) is
called an order one periodic solution of the system (4.2) whose period is T1.

Definition 4.4. Suppose Γ = f(P, t) is an order one periodic solution of the
system (4.2). If for any ε > 0, there must exist δ > 0 and t0 ≥ 0, such that for any
point P1 ∈ U(P, δ) ∩N{x, y}, we have ρ(f(P1, t),Γ) < ε for t > t0 , then we call the
order one periodic solution Γ is orbitally asymptotically stable.
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Remark. Orbitally asymptotic stability is different from Lyapunov asymptotic
stability. An order one periodic solution Γ = f(P, t) of the system (4.2) is Lyapunov
asymptotically stable if for any ε > 0, then there must exist δ > 0 and t0 ≥ 0 such that,
for the solution g(P1, t) starting from any point P1 ∈ U(P, δ), |g(P1, t)− f(P, t)| < ε
for all t > t0.

Notice that when the impulse set M and the phase set N of the system (4.2)
are straight lines, a coordinate system can be well defined in the phase set N . Let
A ∈ N be a point and its coordinate is a. Assume that the trajectory from the point
A intersects the impulse set M at a point A′ ∈ M , and, after impulsive effect, the
point A′ is mapped to the point A1 ∈ N with the coordinate a1. Then we define the
successor point and the successor function as follows.

Definition 4.5. The point A1 is called the successor point of A, and the function
F1(A) = a1 − a is called the successor function of point A.

Throughout this paper, in the system (2.3), we define the coordinate of any point
A ∈ N as the distance between A and the G-axis, denoted by IA. Therefore we have

Lemma 4.6. The successor function F (A) is continuous.

A direction application of Lemma 4.6 leads to following result that plays an
important role to study Model (2.3) in next subsection.

Lemma 4.7. For the systems (2.3), if there exist two points A,B ∈ N such that
F (A)F (B) < 0, then there must exist a point C ∈ N between the points A and B such
that F (C) = 0, thus the system must have an order one periodic solution.

Proof. The continuousness of the successor function by Lemma 4.6 implies the
existence of a point C ∈ N between the points A and B and F (C) = 0. Denote C ′ as
the impulse point of C. Since F (C) = 0, that is, ϕ(C ′) = C. According to Definition
4.3, Γ = f(C, t) is an order one periodic solution.

4.2. Existence, uniqueness and stability of order one periodic solution.
We study Model (2.3) in this section for the case of type 1 diabetes (σ1 = 0) and the
case of type 2 diabetes (σ1 > 0), respectively.

Theorem 4.8. For the case σ1 = 0, if Gs < LG < G0 and IC < σ, then the
system (2.3) has a unique order one periodic solution.

Proof. Suppose that the horizontal line G = LG intersects dG
dt = 0 at point

C(LG, IC). Select the point D(LG, ID), where ID = IC + σ. Then the trajectory of
the system (2.3) through point D must intersect the line G = LG again at a point
Q(LG, IQ), where 0 < IQ < IC . The point Q is mapped to the point Q

′
(LG, IQ′ )

after impulsive effect, where ID > IQ′ = IQ + σ > IC ( becauseIC < σ, ID = IC + σ

). Again, the trajectory of the system (2.3) passing through point Q
′

must intersect
the line G = LG at a point Q1(LG, IQ1), and the point Q1 is mapped to the point

Q
′

1(LG, IQ′1
) after impulsive effect, where IQ′1

= IQ1 + σ. Since distinct trajectories

do not intersect, we can easily have 0 < IQ < IQ1
< IC < IQ′ < IQ′1

< ID. Since

the point D is in the phase set, point Q is the impulse point of point D and point
Q
′

is the successor point of point D, we can get the successor function of point D is
F (D) = IQ′ − ID < 0. Besides, for the point Q

′
in the phase set, point Q1 is the

impulse point of point Q
′

and point Q
′

1 is the successor point of point Q
′
, so we can

get the successor function of point Q
′

is F (Q
′
) = IQ′1

− IQ′ > 0. By Lemma 4.6

and Lemma 4.7, there must exist a point M between the points Q′ and D such that
F (M) = 0, and thus the system (2.3) has an order one periodic solution that has the
point M as its phase point (refer to the left panel of Fig. 4.1.).



MODELING INSULIN IMPULSIVE INJECTION 19

I

G

0

G
L

0
G

Q
1Q C D

'
Q '

1Q

( )a
I

0

G

GL

0G

C1A� '

1A2A�

2A'

2A 1A DQ

( )b

Fig. 4.1. Existence and uniqueness of order one periodic solution of (2.3).

In the following, we prove the uniqueness of the order one periodic solution.
Arbitrarily choose two points A1 and A2 in the phase set, where IC < IA1

< IA2
< ID.

Then the trajectories of the system (2.3) through points A1 and A2 must intersect
the line G = LG at some points A+

1 and A+
2 respectively, which are in the impulse

set and satisfy IQ < IA+
2
< IA+

1
< IC . The points A+

1 and A+
2 must be mapped

to two points in the phase set after impulsive effect which we denote as A
′

1 and A
′

2

respectively, where IA′1
= IA+

1
+σ and IA′2

= IA+
2

+σ. Obviously, the point A+
i is the

impulse point of Ai and the point A
′

i is the successor point of Ai, i = 1, 2. Then the
successor functions of A1 and A2 satisfy F (A2)−F (A1) = (IA′2

−IA2)− (IA′1
−IA1) =

(IA′2
− IA′1) + (IA1

− IA2
) < 0, which means the successor function F (A) is monotone

decreasing in the segment CD, thus there exists only one point M such that F (M) = 0
(refer to the right panel in Fig. 4.1). That completes the proof.

We shall show the order one periodic solution is orbitally asymptotically sta-
ble. That implicates in clinic that some perturbation would not affect the effect of
treatment drastically.

Theorem 4.9. For the case σ1 = 0, if Gs < LG < G0 and IC < σ, then the
order one periodic solution of the system (2.3) is orbitally asymptotically stable.

Proof. In the following discussion, for any point A in the impulse set, we denote
its phase point as A

′
and we have IA′ = IA + σ.

According to Theorem 4.8, the system (2.3) has a unique order one periodic
solution that has the point M(LG, IM ) as its phase point, where IQ′ < IM < ID.

Consider the successor point Q
′

of point D (which is defined in Theorem 4.8 and
refer to the left panel of Fig. 4.2), we know IC < IQ′ < IM . The trajectory passing

through the point Q
′

must intersect the impulse set again at point Q1 which is the
impulse point of Q

′
, and the point Q1 must be mapped to point Q

′

1 after impulsive
effect which is the successor point of Q

′
. Besides, we denote the impulse point of the

order one periodic solution as M ′. Because distinct trajectories do not intersect, we
can easily get IQ < IM ′ < IQ1

< IC and IM < IQ′1
< ID.

Similarly, the trajectory passing through the point Q
′

1 must intersect the impulse
set again at point Q2 which is the impulse point of Q

′

1, and the point Q2 must be
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Fig. 4.2. Left Panel: Illustration of the orbitally asymptotically stability of the order one
periodic solution of the system (2.3) when Gs < LG < G0 and IC < σ. Right Panel: Orbit
in phase plane by Model (2.3). It is shown that the solution is asymptotically orbital stable. It
is also clearly seen that the glucose concentration is controlled by a preset threshold value with
LG = 160, σ = 100, G(0) = 155, and I(0) = 55.

mapped to point Q
′

2 after impulsive effect which is the successor point of Q
′

1. We
have IQ < IQ2 < IM ′ and IQ′ < IQ′2

< IM .

Repeat the above steps, the trajectory from point D will come across impulsive
effect infinitely times. Denote the phase point corresponding to the ith impulsive
effect as Q

′

i−1, i = 1, 2, · · · , where Q
′

0 = Q′. We have

IC < IQ′0
< IQ′2

< IQ′4
< · · · < IQ′2k

< IQ′
2(k+1)

< · · · < IM ,

and

ID > IQ′1
> IQ′3

> IQ′5
> · · · < IQ′2k+1

> IQ′
2(k+1)+1

> · · · > IM .

Thus {IQ′2k}, k = 0, 1, 2, · · · , is a monotonically increasing sequence, and {IQ′2k+1
}, k =

0, 1, 2, · · · , is a monotonically decreasing sequence (see the left panel of Fig. 4.2), and
furthermore,

IQ′2k
→ IM , as k →∞; and IQ′2k+1

→ IM , as k →∞.

Choose an arbitrary point P0 ∈ Q′D, which is different from the point M . Without
loss of generality, we assume that IQ′ < IP0 < IM ( otherwise, IM < IP0 < ID, the
discussion is similar). There must exist an integer k such that IQ′2k

< IP0
< IQ′

2(k+1)
.

The trajectory from point P0 will also undergo impulsive effect infinitely times. We
denote the phase point corresponding to the lth impulsive effect as Pl, l = 0, 1, 2, . . .,
then for any l, IQ′

2(k+l)
< IP2l

< IQ′
2(k+l+1)

and IQ′
(2k+l+1)+1

< IP2l+1
< IQ′

2(k+l)+1
, so

{IP2l
}, l = 0, 1, 2, · · · , is also monotonically increasing, and {IP2l+1

}, l = 0, 1, 2, · · · , is
also monotonically decreasing, and

IP2l
→ IM , as l→∞; and IP2l+1

→ IM , as l→∞.
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Therefore, in either case, the successor points of the phase points corresponding to
the successive impulsive effect are attracted to the point M , which implies that the
order one periodic solution of the system (2.3) is orbitally asymptotically stable.

By similar arguments, although slightly more complicated, we have the following
results for type 2 diabetes. We omit the proof.

Theorem 4.10. When σ1 > 0, if Gs < LG < G∗ and IC < σ, then the system
(2.3) has a unique order one periodic solution, and it is orbitally asymptotically stable.

The right panel in Fig. 4.2 displays one orbit with initial condition below the
threshold value and its stability. Fig. 5.3 shows that the plasma glucose level is
controlled under the predefined threshold value 190 mg/dl with various initial values.

5. Numerical simulations. The use of insulin pump, also called continuous
subcutaneous insulin infusion (CSII) therapy, has greatly increased for type 1 dia-
betes ([18]). It can also provide a feasible alternative to insulin injections for type 2
diabetes ([6], [22], [24], [35]). Model (2.2) proposed in this paper is based on phys-
iology for the regulation of glucose and insulin with the mimicking of subcutaneous
injection of analogue with periodic impulse. Thus Model (2.2) is close to the practical
situation in clinic for the so called open-loop administration. The loop can be closed in
clinical therapies by incorporating the feedback for blood suger from accurate glucose
monitoring system. In such case, Model (2.3) provides a robust model with the most
important and critical feature, that is, the timing of insulin injection is determined
by the blood suger level read from an accurate glucose monitor. A wide accepted
agreement by researchers for artificial pancreas is for each model to get a better un-
derstanding of strength and weakness in validating different control algorithms ([27])
and develop clinical applicable controls. In this section, we apply Model (2.2) and
Model (2.3) under a few typical clinical situations and study the simulation results.

Insulin analogues sold in market off-shelf are usually stored at temperatures be-
tween 36◦F - 46◦F (2◦C - 8◦C) in different concentration, e.g., 40U or 100U in a 10ml
vial. The units of insulin and glucose in our model are µU/ml and mg/dl, respectively.
So we need to make necessary conversion to obtain the dose as the model input of
insulin injection. Two common methods, the weight method and an individual plan,
are often employed to determine dose through insuli-to-carb ratios. Weight method
assumes that insulin resistance increases along with weight so the dose should be
larger if apatient has gained weight. Individual plan method is an empirical process
by deploying a series of daily doses and then adjusting accordingly to find the best
plan. (Refer to [36].) In our simulation, we assume that the volume of the plasma
compartment in human is 10 liter (l). According to the dose calculator suggested by
[34], we calculate that for dose as follows. If inject xU for a ykg subject every z minute,
then, in each time, the injected insulin T = xU×y × 106µU. For every 30 minutes,
the total injected mass for 48 times in 24 hours is at m = T/48µU, so the concentra-
tion I = m(10 ∗ 103)µU/ml. For example, if inject 0.5U for a 85kg subject every 30
minute, then total injected insulin T = 0.5U×85 = 42.5U, that is T = 42.5U×106µU.
For every 30 minutes, the injected mass is at m = T/48 = 885420µU ≈ 0.89U, so the
concentration I = m/(10× 103) = 88.5420µU/ml.

The parameter values in our simulations are determined either by comparing
the response functions f1, f2, f3, f4 and f5 in [28] and [29], or from the models for
intravenous glucose tolerance test (IVGTT) in [9], [17], [20] and [21] (see Table 5.1),
which were estimated by experiments. Since the units of glucose and insulin of the
model in [28] are mass, unit conversion is made, as in [14] and [16], for display.
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Table 5.1
Approximated model parameter values from existing references. Necessary conversions of units

are made and the values are adjusted within reasonable ranges.

Parameters Values units References

Gin 2.16 mg/dl [14], [16], [28], [29]
b 1 mg/dl/min [9], [14], [16], [28], [29]
σ2 5× 10−6 min−1 [9], [17]
a 3× 10−5 mg−1 [9], [14], [16], [17], [28], [29]
c 0.4 mg/dl/min [14], [16], [28], [29]
m 9.0 mg/dl/min [14], [16], [28], [29]
n 80 mg/dl [28]
σ1 20.9 µU/ml/min [28]
α1 105 mg/dl [14], [16], [17], [20], [21], [28], [29]
di 0.06 min−1 [14], [16], [17]
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Fig. 5.1. Positive periodic solutions of (2.2) for type 1 diabetes (σ1 = 0) with different initial
values with σ = 1000 (mU).

For insulin pump in open-loop approach for type 1 diabetes, according to Theorem
3.9 and 3.10, a unique positive and globally stable periodic solution exists (refer to
Fig. 5.1). Fig. 5.1 also reveals that, with different initial glucose levels, about three
delivery cycles are needed to make plasma glucose in an oscillatory homeostasis.

For type 2 diabetes (σ1 > 0), Theorem 3.11 ensures that the solutions are bounded
above and below (refer to Fig. 5.2). We compare the profiles by setting the delivery
impulses in different periods but at the same total daily dose. We noticed that under
the open-loop environment, for the same daily total dose, the impulsive injection with
smaller dose but shorter period has more efficient effect on controlling plasma glucose
level than the injection with larger dose but longer period, which is demonstrated by
Fig. 5.2. The numerical observation is similar for the case of type 1 diabetes (σ1 = 0)
(which is not shown in this paper).

For the case of artificial pancreas with closed-loop approach, our theoretical results
(Theorem 4.8, 4.9 and 4.10 qualitatively ensure that the state-dependent impulsive
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Fig. 5.3. Comparison of the profiles produced by Model (2.3) with different initial glucose
levels. Glucose concentration is controlled under the threshold level LG = 190 while σ = 1000(mU).

insulin delivery will maintain the system at a sustained oscillatory homeostasis con-
trolled by a predefined threshold value (LG). Given the model parameters in Table
5.1, LC = 106.6345. Fig. 5.4 exhibits not only orbital stable periodic solutions, but
also that smaller dose creates smaller amplitude and shorter period or faster frequency.
It is clear shown that the glucose concentration is successfully controlled under the
threshold value 190mg/dl. In this case, we would suggest to apply larger dose so that
the glucose concentration stays in lower level for longer time. However, dose has to
be carefully calculated to avoid hypoglycemic episodes.

6. Discussions. In this paper we proposed two models that have potential con-
tributions to the designs of algorithms for insulin pump, and the development of
artificial pancreas. This is probably the first attempt to formulate a physiological
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and metabolic model by a semi-continuous dynamical system. This novel approach
enables that insulin delivery can be modeled by periodic impulse and state-dependent
impulse.

The analytical studies of Model (2.2) with periodic impulsive insulin delivery and
the semi-continuous system model (2.3) with state-dependent impulse ensures that
blood suger level is under control provided that some undemanding conditions are
satisfied (refer to (Theorem 3.9, Theorem 3.10, Theorem 3.11, Theorem 4.8, Theorem
4.9 and Theorem 4.10). Numerical simulations reveal that smaller dose with shorter
period of impulsive injection produces more efficient and effective outcome in control-
ling glucose level than a therapy using larger dose with longer period of impulse for
open-loop oriented insulin pumps. In contrast, for artificial pancreas with closed-loop
design, larger dose will keep glucose level remaining at lower level for longer time. This
is ideal if hypoglycemic episodes can be prevented. These observations could have sig-
nificant implications in the endeavors of designing efficient and effective algorithms
based on open loop models for insulin pump, and development of control algorithms
for artificial pancreas based on models in the fashion of closed-loop regulations.

It is well known that a time delay exists for insulin secretion upon the stimulation
of elevated glucose concentration level ([16], [28]). Another time delay comes from
control system sensing the blood suger level and feedback to the model. It would
be more realistic if these two time delays are incorporated in Model (2.2) and Model
(2.3). We will consider such delays in next study.

Mostly likely, insulin injected subcutaneously by insulin pump is insulin ana-
logues, for example, fast-acting aspart and long-acting glargine ([15]). The dissolu-
tion of such analogues in injection depot follows certain dynamics. Certain impact
is inevitably imposed on to the dynamics of plasma glucose level. Several pharma-
cokinectical models are proposed for the dissolution of insulin analogues in injection
depot, which is used to estimate plasma insulin concentration. The most recent model
in this area is a systemic model proposed by Li and Kuang ([15]), in which plasma
insulin is integrated as a variable thus the computation for plasma insulin level is
more accurate. Li and Johnson summerize above in [13]. Information obtained from
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such models may be useful in design and development of artificial pancreas.

The exogenous glucose input in the models proposed in this paper is estimated
at an average constant rate Gin. In reality, the glucose input rate can never be a
constant. Instead, it varies with time, for example, meal ingections affect the input
rate. The authors of [11] simulate meal ingestion by

RA(t) =
CH(t)

VGτ2m
te−

1
τm ,

where CH is the amount of carbohydrate consumed at time t, τm is the peak time of
absorption, and VG is the glucose distribution volume. We also speculate that a com-
bination of the model proposed by Hovorka et al ([10]) as the input of the endogenous
glucose with the models proposed in this paper could form a more comprehensive and
reliable simulation model.
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