Cheating will be punished. Show your work logically and write neatly. Just guessing answer won’t get any credit. **Write your work within the space given below, which will be possible!**

Problem 1. Define a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ by

$$T(x_1, x_2) = (x_1 - 2x_2, x_1 + 3x_2, -3x_1 + 2x_2).$$

(a) (10pt) Find the standard matrix A for T.

(b) (10pt) Find $x = (x_1, x_2)$ such that $T(x) = (8, -7, -12)$.
Problem 2. Let

\[
A = \begin{bmatrix}
1 & -2 & 0 \\
-3 & 4 & 1 \\
2 & 4 & -3
\end{bmatrix}.
\]

(a) (15pt) Find the inverse of \(A \).

(b) (5pt) Double check your answer by multiplying \(A \) by its inverse to get an identity matrix.
Problem 3. Assume that matrix A and B are row equivalent.

$$A = \begin{bmatrix}
1 & 4 & -3 & -1 & 9 \\
-2 & -6 & 6 & -1 & -10 \\
-3 & -6 & 9 & -6 & -3 \\
3 & 4 & -9 & 9 & 0
\end{bmatrix}, \quad B = \begin{bmatrix}
1 & 0 & -3 & 5 & -7 \\
0 & 2 & 0 & -3 & 8 \\
0 & 0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

(a) (15pt) Find bases for $\text{Col}(A)$, $\text{Row}(A)$, and $\text{Nul}(A)$.

(b) (5pt) Find also $\text{rank}(A)$ and dimension of $\text{Nul}(A)$ and then show it satisfies the rank theorem.
Problem 4. Let \(A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \). Answer the following.

(a) (5pt) Find all eigenvalues of \(A \) by finding the characteristic equation of \(A \). Include the multiplicity of each eigenvalue.

(b) (10pt) Find a basis for each corresponding eigenspace of \(A \).

(c) (5pt) Determine whether \(A \) is diagonalizable.
Problem 5. Let \(A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \).

(a) (5pt) Determine whether \(A \) and \(B \) are diagonalizable. Justify your answer to get the full credit.

(b) (15pt) If \(A \) or \(B \) is diagonalizable, then find \(P \) and \(D \) so that \(PDP^{-1} \) is \(A \) or \(B \).

Problem 6. Let \(\{x_1, x_2\} \) be a basis for \(W = \text{span}\{x_1, x_2\} \), where

\[
x_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad x_2 = \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix},
\]

(a) (10pt) Find an orthogonal basis \(\{u_1, u_2\} \) for \(W \).
Problem 7. (a) (15pt) Find an orthogonal basis for the column space of A, where

$$A = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 2 & 1
\end{bmatrix}.$$

(b) (5pt) Double-check whether your basis is really orthogonal.

(b) (10pt) Let $y = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Write $\hat{y} = \text{Proj}_W y$ in term of your new orthogonal basis obtained in (a).
Problem 8. Let

\[A = \begin{bmatrix}
1 & -1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
1 & 0 & -1 & 0 \\
1 & 0 & 0 & -1 \\
1 & 0 & 0 & -1 \\
\end{bmatrix}, \quad b = \begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
\end{bmatrix}. \]

(a) (5pt) Show that the equation \(Ax = b \) is inconsistent by inspection.

(b) (15pt) Find all least-squares solutions of the equation \(Ax = b \).

(c) (10pt) Compute the least-squares error associated with the least-squares solutions found in (a).
Problem 9. (a) (5pt) Give a definition of the similarity of two n by n matrices A, B.

(b) (5pt) Then prove that if two n by n matrices A, B are similar, they have the same characteristic polynomial.

Problem 10. (20pt) Circle True or False for each statement. If true give a brief justification and if false give a counterexample, to get full credit. Each is worth 4 points.

(a) True or False : Every vector space with dimension at least 2 has an orthogonal basis.

(b) True or False : If the least-squares error of a matrix equation $Ax = b$ is zero, then $Ax = b$ is inconsistent.

(c) True or False : If U is an n by n matrix such that $U^T U = I_n$, where I_n is an identity matrix of size n, then $UU^T = I_n$.

(d) True or False : The sum of two eigenvectors of a matrix A with the same eigenvalue λ is also an eigenvector of A.

(e) True or False : If A is a 7×9 matrix with a two-dimensional null space, then the rank of A is 5.

Have a good break!