Formally self-dual additive codes over \mathbb{F}_4 and near-extremal self-dual codes

Sunghyu Han
Department of Mathematics,
Yonsei University
Seoul 120-749, Korea
Email: sunghyu@yonsei.ac.kr
and
Jon-Lark Kim
Department of Mathematics,
University of Louisville
Louisville, KY 40292, USA,
Email: jl.kim@louisville.edu

May 21, 2007

Abstract

We introduce a class of formally self-dual additive codes over \mathbb{F}_4 as a natural analogue of binary formally self-dual codes, which is missing in the study of additive codes over \mathbb{F}_4. We define extremal formally self-dual additive codes over \mathbb{F}_4 and classify all such codes. Interestingly, we find exactly three formally self-dual additive $(7,2^7)$ odd codes over \mathbb{F}_4 with minimum distance $d = 4$, a better minimum distance than any self-dual additive $(7,2^7)$ codes over \mathbb{F}_4. We further define near-extremal formally self-dual additive codes over \mathbb{F}_4 as an analogue of near-extremal binary formally self-dual codes, and prove that they do not exist if their lengths are $n = 16, 18$ or $n \geq 20$. We improve the bounds on the minimum distance of formally self-dual binary codes in a similar manner. Finally, we extend S. Zhang’s best known upper bound on the highest minimum distance of the four types of classical self-dual codes of large lengths.

Key Words: Additive codes; extremal codes; near-extremal codes; formally self-dual additive codes; self-dual codes.
AMS subject classification: 94B60
Abbreviated title: Near-extremal formally self-dual codes
1 Introduction

Binary self-dual codes and additive self-dual codes over \mathbb{F}_4 have common properties such as Type I, Type II, shadow codes, s-extremal codes, etc [9],[19]. Binary formally self-dual codes are defined as a class of binary codes whose weight enumerators are the same as the weight enumerators of their dual codes. Hence they include the class of binary self-dual codes, and their weight enumerators are combinations of Gleason polynomials of Type I [13].

One of the motivations studying binary formally self-dual codes is that some binary formally self-dual codes (e.g., at lengths 10 or 18 [13]) have a better minimum distance than any self-dual codes of the same length. This observation leads us to consider a class of formally self-dual additive codes over \mathbb{F}_4 and to find their highest minimum distances using their extremal or near-extremal weight enumerators.

The class of formally self-dual additive codes can be put together with the four types of classical self-dual codes (i.e., Type I binary self-dual codes, Type II binary self-dual codes, Type III ternary self-dual codes, and Type IV Hermitian self-dual codes) since the weight enumerators of these five classes are generated by two Gleason polynomials.

In this paper, we introduce a class of formally self-dual additive codes over \mathbb{F}_4 and classify them. We find an upper bound on the highest minimum distance of these codes. In an analogously manner, we improve a best known upper bound on the highest minimum distance of formally self-dual binary codes. We extend a best known upper bound on the highest minimum distance of the four types of classical self-dual codes of large lengths.

This paper is organized as follows. Section 2 gives a brief introduction to additive codes over \mathbb{F}_4 and defines extremal formally self-dual additive even or odd codes over \mathbb{F}_4.

Section 3 classifies extremal formally self-dual additive odd codes of length up to 7 and shows that there is no extremal formally self-dual additive odd code of length $n \geq 8$. In particular, we construct exactly three formally self-dual additive $(7,2^7)$ odd codes over \mathbb{F}_4 with minimum distance $d = 4$, a better minimum distance than any self-dual additive $(7,2^7)$ codes over \mathbb{F}_4. These $(7,2^7,4)$ additive codes over \mathbb{F}_4 would produce binary $[28,14,7]$ codes or optimal binary $[28,14,8]$ codes via Construction O or Construction E respectively, as described in [14].

In Section 4, we describe possible weight enumerators of formally self-dual additive odd codes with even length. Our results are \mathbb{F}_4-analogues of near-extremal formally self-dual binary codes considered in [15]. We show that there exist near-extremal formally self-dual additive codes of length 6 with all possible weight enumerators.

Section 5 shows that given an $(n,2^n,d)$ formally self-dual additive code, if $n = 18$ or $n \geq 20$, then $d < \left[\frac{n}{2} \right]$, i.e., there is no near-extremal formally self-dual additive code. We do this by showing that $A_{\left[\frac{n}{2} \right]+2} < 0$. It is further shown in Section 7 that there is no near-extremal formally self-dual additive code of length 16.

Similarly, in Section 6 we improve the bounds on the minimum distance of binary formally self-dual codes. More precisely, we show that there is no near-extremal formally self-dual $[n = 8t + 2l, \frac{n}{2}, d = 2\left[\frac{n}{8} \right]]$ binary linear code if $l = 1$ and $t \geq 12$, if $l = 2$ and $t \geq 13$, or if $l = 3$ and $t \geq 14$, which, together with the case $l = 0$ and $t \geq 9$ considered in [8], gives the best known upper bounds on the length n for which there exist near-extremal formally self-dual binary codes.
Section 7 deals with the nonexistence of near-extremal binary f.s.d. even codes, Type II self-dual codes, Type III self-dual codes, Type IV self-dual codes, and f.s.d.a. odd codes over \mathbb{F}_4. Our main result (Theorem 7.2) extends the S. Zhang’ best known bounds [20] on the highest minimum distance of four types of classical self-dual codes of large lengths (see also [16, Sec. 11.1]).

2 Preliminaries

We refer to [2], [6], [12] for definitions and facts about additive codes over \mathbb{F}_4.

An additive code C of length n over \mathbb{F}_4 is an additive subgroup of \mathbb{F}_4^n. C contains 2^k codewords for some $0 \leq k \leq 2n$, and can be defined by a $k \times n$ generator matrix, with entries from \mathbb{F}_4, whose rows span C additively. We call C an $(n, 2^k)$ code. We denote $\mathbb{F}_4 = \{0, 1, \omega, \omega^2\}$, where $\omega^2 = \omega + 1$. The conjugation of $x \in \mathbb{F}_4$ is defined by $x^* = x^2$. The trace map, $Tr : \mathbb{F}_4 \rightarrow \mathbb{F}_2$, is defined by $Tr(x) = x + x^*$. The Hermitian trace inner product of two vectors $u = (u_1, u_2, \cdots, u_n)$ and $v = (v_1, v_2, \cdots, v_n)$ in \mathbb{F}_4^n is given by

$$<u, v> = Tr(u \cdot v) = \sum_{i=1}^{n} Tr(u_i v_i^*) = \sum_{i=1}^{n} (u_i v_i^2 + u_i^2 v_i) \pmod{2}.$$

We define the dual of the code C with respect to the Hermitian trace inner product by $C^\perp = \{ u \in \mathbb{F}_4^n | <u, c> = 0 \text{ for all } c \in C \}$. Then C^\perp is also additive. C is self-orthogonal if $C \subseteq C^\perp$. If $C = C^\perp$, then C is self-dual and must be an $(n, 2^n)$ code. Two additive codes C_1 and C_2 are equivalent if there is a map sending the codewords of C_1 onto the codewords of C_2 where the map consists of a permutation of coordinates followed by a possible scaling of coordinates by nonzero elements of \mathbb{F}_4 followed by possible conjugation of some of the coordinates. The automorphism group $\text{Aut}(C)$ of C is the group of all maps sending C to itself using these three operations.

The Hamming weight of u, denoted $wt(u)$, is the number of nonzero components of u. The Hamming distance between u and v is $wt(u - v)$. The minimum distance of the code C is the minimal Hamming distance between any two distinct codewords of C. Since C is an additive code, the minimum distance is also given by the smallest nonzero weight of any codeword in C. A code with minimum distance d is called an $(n, 2^k, d)$ code. The weight distribution of the code C is the sequence (A_0, A_1, \ldots, A_n), where A_i is the number of codewords of weight i. The weight enumerator of C is the polynomial

$$W_C(x, y) = \sum_{i=0}^{n} A_i x^{n-i} y^i.$$

Theorem 2.1. (MacWilliams’ identity) Let C be an additive code over \mathbb{F}_4. Then

$$W_{C^\perp}(x, y) = \frac{1}{|C|} W_C(x + 3y, x - y).$$

Proof. See Theorem 1 in [10].
Definition 2.2. An additive code C over F_4 is formally self-dual (f.s.d.) if

$$W_C(x, y) = W_C(x, y).$$

A formally self-dual additive (f.s.d.a.) code C over F_4 is even if all the weights of codewords of C is divisible by 2, and odd if some of the weights of codewords of C is not divisible by 2.

Theorem 2.3. Let C be an f.s.d.a. $(n, 2^n)$ code over F_4. Then the weight enumerator $W_C(x, y)$ is a weighted homogeneous polynomial of weight n in $x + y$ and $y(x - y)$.

Proof. The proof is essentially the same as the one in Theorem 3 of [10].

Theorem 2.4. An f.s.d.a. even code C is self-dual.

Proof. Let $u, v \in C$. By the following identity

$$\text{wt}(u + v) - \text{wt}(u) - \text{wt}(v) \equiv <u, v> \pmod{2},$$

the theorem holds.

Remark 2.5. By Theorem 2.4, we focus on f.s.d.a. odd codes over F_4.

Let C be an $(n, 2^n, d)$ f.s.d.a. code over F_4. Define $m = \lfloor n/2 \rfloor$. By Theorem 2.3 the weight enumerator of a code C can be written as

$$W_C(x, y) = \sum_{i=0}^{m} a_i (x + y)^{n-2i} (y(x - y))^i$$

(1)

with unique integral numbers a_i. There is a unique choice of the numbers a_0, \ldots, a_m such that the right hand side of (1) equals

$$x^n + 0 \cdot x^{n-1}y + \cdots + 0 \cdot x^{n-m}y^m + A_{m+1}x^{n-m-1}y^{m+1} + \cdots + A_n y^n.$$

(2)

We call (2) the extremal weight enumerator and a code with this extremal weight enumerator an extremal code. So, an extremal code has minimal weight $d \geq \lfloor n/2 \rfloor + 1$.

Theorem 2.6. The minimal distance d of an f.s.d.a. code C over F_4 of length n satisfies

$$d \leq \lfloor n/2 \rfloor + 1.$$

Proof. The proof is essentially the same as the one in Theorem 11 of [10].

3 Classification of extremal formally self-dual additive odd codes over F_4

In this section we classify extremal $(n, 2^n, \lfloor n/2 \rfloor + 1)$ f.s.d.a. odd codes. We consider the following construction method, which is a modified balance principal for self-dual codes over F_4 [6] and for formally self-dual binary codes [5].
Lemma 3.1. Let \mathcal{C} be an extremal f.s.d.a. $(n, 2^n)$ odd code with minimum distance $d = \lceil \frac{n}{2} \rceil + 1$ and G be its n by n generator matrix. Assume that n is odd. Then G is equivalent to the following matrix.

$$G' = \begin{bmatrix} I_d & B \\ D & E \end{bmatrix}$$

where I_d is the d by d identity matrix, D is the $(d-1)$ by d matrix of the form

$$D = \begin{bmatrix} \omega & \omega & 0 & 0 & \cdots & 0 \\ \omega & 0 & \omega & 0 & \cdots & 0 \\ \vdots & & & & & \\ \omega & 0 & 0 & \cdots & 0 & \omega \end{bmatrix},$$

B is a 2 by $(d-1)$ matrix of one of the following forms

$$B_1 = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & \omega & \cdots & \omega \end{bmatrix} \text{ or } B_2 = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \omega & \omega & \cdots & \omega \end{bmatrix},$$

and E is an \mathbb{F}_4-matrix of size $(n-2) \times (d-1)$.

Proof. We may assume that \mathcal{C}^\perp contains the all-one vector 1 of minimum distance d up to equivalence. Then the dual of the code generated by 1 is the code F generated by the rows of I_d and D. Note that F has \mathbb{F}_2-dimension $n = 2d - 1$. If any proper nonzero subcode of F is used in the left side of G' then there is a vector $y = (0|x)$ in \mathcal{C} with $x \neq 0$ since the \mathbb{F}_2-dimension of \mathcal{C} is n. As $1 \leq \text{wt}(y) \leq d - 1$, we get a contradiction. Therefore the left side of G' must be generated by I_d and D. Finally, B_1 or B_2 is chosen up to equivalence to keep the minimum distance of the code generated by the first two rows of G' to be at least d.

The most time consuming part of Lemma 3.1 is to fill in the entries of E. We do this by Magma [3] using the equivalence of additive codes developed in [6]. We have the following result.

- $n = 1$: $W_C(1, y) = 1 + y$: There is a unique f.s.d.a. $(1, 2, 1)$ code with generator matrix (1). This is self-dual.

- $n = 2$: $W_C(1, y) = 1 + 3y^2$: There is no extremal f.s.d.a. odd code of length 2. Only one extremal f.s.d.a. even code generated by (11) and $(\omega \omega)$ exists [10]. This is a Type II self-dual code. It is easy to check by hand that there are, up to equivalence, exactly two f.s.d.a. $(2, 2^2, 1)$ non self-dual codes, generated by $\{(1 0), (\omega 0)\}$ or $\{(1 0), (\omega 1)\}$, respectively.

- $n = 3$: $W_C(1, y) = 1 + 3y^2 + 4y^3$: We show that there are exactly two extremal f.s.d.a. codes of length 3, denoted by $C_{2,1}$ and $C_{2,2}$. They have following generator matrices respectively using Lemma 3.1.
We note that $C_{2,1}$ is a Type I self-dual code \[10\], while $C_{2,2}$ is not. We check that $|\text{Aut}(C_{2,1})| = 8$ and $|\text{Aut}(C_{2,2})| = 24$.

- $n = 4$: $W_C(1, y) = 1 + 12y^3 + 3y^4$: There is no $(4, 2^4, 3)$ additive self-dual code \[10\]. Modifying the left side of G' given in Lemma 3.1, we easily obtain a unique extremal f.s.d.a. code C_4 of length 4, which has $|\text{Aut}(C_4)| = 36$, and whose generator matrix is unique up to equivalence as shown below.

\[
G(C_4) = \begin{bmatrix}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
\bar{w} & \bar{w} & 0 & \bar{w} \\
\bar{w} & \bar{w} & 0 & \bar{w} \\
\end{bmatrix}.
\]

Therefore $n = 4$ is the first length for which a f.s.d.a. code has a better minimum distance than any self-dual additive code over \mathbb{F}_4 of that length.

The code C_4 is also a linear code over \mathbb{F}_4 generated by $(1, 1, 0, 1)$ and $(1, 0, 1, \omega)$. Note that C_4 regarded as a \mathbb{F}_4-linear code is not Euclidean self-dual. We can further choose a Euclidean self-dual f.s.d.a. odd code over \mathbb{F}_4 as follows. Let C be a linear code over \mathbb{F}_4 by the following generator matrix.

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & \omega & \bar{w} \\
\end{bmatrix}.
\]

Then by Section 3.2 in \[19\], C is a Euclidean self-dual code with the weight enumerator

\[
W_C(1, y) = 1 + 12y^3 + 3y^4.
\]

Since the MacWilliams identity of Euclidean self-dual code is the same as f.s.d.a. codes over \mathbb{F}_4, C is a $(4, 2^4, 3)$ f.s.d.a. codes over \mathbb{F}_4. It is straightforward to check that C is equivalent to C_4 as an additive code.

- $n = 5$: $W_C(1, y) = 1 + 10y^3 + 15y^4 + 6y^5$: There are exactly four $(5, 2^5, 3)$ f.s.d.a. (non self-dual) codes, denoted by $C_{5,1}, \ldots, C_{5,4}$ and a unique $(5, 2^5, 3)$ Type I self-dual code $C_{5,5}$. Their generator matrices $G(C_{5,i})$ for $i = 1, \ldots, 5$ are given below, and their automorphism group orders are all 16. $C_{5,5}$ must be equivalent to the unique $(5, 2^5, 3)$ Type I self-dual code \[10\].

\[
G(C_{5,1}) = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & w \\
0 & 0 & 1 & w & 1 \\
w & w & 0 & 1 & w \\
w & 0 & w & 1 & w^2 \\
\end{bmatrix}, \quad G(C_{5,2}) = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & w \\
0 & 0 & 1 & w & 1 \\
w & w & 0 & 1 & w \\
w & 0 & w & w & w^2 \\
\end{bmatrix},
\]
\[
G(C_{5,3}) = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & w \\
0 & 0 & 1 & w & 1 \\
w & w & 0 & w^2 & 1 \\
w & 0 & w & 1 & w^2
\end{bmatrix}, \quad G(C_{5,4}) = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & w \\
0 & 0 & 1 & w & 1 \\
w & w & 0 & w & 1 \\
w & 0 & w & 1 & w^2
\end{bmatrix}.
\]

\[
G(C_{5,5}) = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & w & w \\
0 & 0 & 1 & w^2 & w^2 \\
w & w & 0 & w & 1 \\
w & 0 & w & 1 & w^2
\end{bmatrix}.
\]

- \(n = 6 \): \(W_C(1, y) = 1 + 45y^4 + 18y^6 \): Due to this weight enumerator, there is no extremal f.s.d.a. odd code over \(\mathbb{F}_4 \). It is known that there is a unique Type II self-dual code of length 6 [10]. Modifying the construction of Lemma 3.1, we construct 235 f.s.d.a. \((6, 2^6)\) odd non self-dual codes with \(d = 3 \) and the unique Type I self-dual \((6, 2^6, 3)\) code [10] up to equivalence, making use of restricted equivalence described in [6].

- \(n = 7 \): \(W_C(1, y) = 1 + 35y^4 + 42y^5 + 28y^6 + 22y^7 \): Each case of Lemma 3.1 produces exactly three inequivalent \((7, 2^7, 4)\) f.s.d.a. (non self-dual) codes. As the three codes of the first case of Lemma 3.1 using \(B_1 \), denoted by \(C_{7,1}, \ldots, C_{7,3} \) are equivalent to those of the second case using \(B_2 \), we only display their generator matrices below, and their automorphism group orders are 7, 6, 42, respectively. There is no \((7, 2^7, 4)\) Type I self-dual code but there exist four \((7, 2^7, 3)\) Type I self-dual codes (note: the three codes with these parameters in Table 1 of [6] are corrected in [4]). Thus just like \(n = 4 \) case, the minimum distance of extremal f.s.d.a. codes of length \(n = 7 \) beats that of any self-dual codes of the same length. Hence applying Construction O or Construction E [14] to the three extremal f.s.d.a. codes we get binary \([28, 14, 7]\) codes or optimal binary \([28, 14, 8]\) codes [1].
• $n = 8$: negative weight enumerator $(A_{\frac{n}{2}+2} < 0)$. Hence there is no extremal f.s.d.a. code of length 8.

• $n = 9$: $W_C(1, y) = 1 + 126y^5 + 84y^6 + 108y^7 + 171y^8 + 22y^9$: Using Lemma 3.1, we have checked that there is no extremal f.s.d.a. code of length 9.

• $n = 10$: negative weight enumerator $(A_{\frac{n}{2}+2} < 0)$. Hence there is no extremal f.s.d.a. code of length 10.

• $n = 11$: $W_C(1, y) = 1 + 462y^6 + 495y^7 + 880y^8 + 66y^9 + 144y^{10}$: Using Lemma 3.1, we have checked that there is no extremal f.s.d.a. code of length 11.

• $n \geq 12$: $A_{\frac{n}{2}+2} < 0$ by the proof of Theorem 12 in [10]. Hence there is no extremal f.s.d.a. code of length n if $n \geq 12$.

In particular, we have shown the following.

Theorem 3.2.

(i) There exists a unique extremal f.s.d.a. odd $(4, 2^4, 3)$ code over F_4.

(ii) There exist exactly three extremal f.s.d.a. odd $(7, 2^7, 4)$ codes over F_4.

(iii) Any f.s.d.a. odd $(n, 2^n, d)$ code over F_4 satisfies

$$d \leq \left\lfloor \frac{n}{2} \right\rfloor$$

for $n \geq 8$.

Hence it is natural to consider the following definition.

Definition 3.3. An f.s.d.a. odd code over F_4 of length n with minimum distance $d = \left\lfloor \frac{n}{2} \right\rfloor$ is called near-extremal.

The above results are summarized in Table 1. Here the second column $d_{\text{non sd fsd ao}}^{\text{non sd fsd ao}}$ refers to the (extremal (E) or near-extremal (NE)) minimum distance of a possible formally self-dual additive odd codes excluding Type I self-dual codes, the third column refers to the number of the corresponding codes, and the forth and fifth column refer to the minimum distance of optimal Type I codes and the number of the corresponding codes respectively from [4],[6],[10],[11].

4 Possible weight enumerators of near-extremal f.s.d.a. odd codes over F_4 with even length

In this section we calculate the possible weight enumerators of f.s.d.a. odd codes with even length. Our results are F_4-analogues of near-extremal formally self-dual binary codes done in [15]. The approach in this section is similar to that of [15].

Let C be an f.s.d.a. odd code over F_4. We define a code in C as even code if its weight is even and odd code if its weight is odd. We denote the set of even codes in C by EC and
Table 1: Highest minimum distance of formally self-dual additive odd (f.s.d.a.o.) non self-dual codes over \mathbb{F}_4 of lengths up to 12

<table>
<thead>
<tr>
<th>length</th>
<th>$d_{fsdao}^{non sd}$</th>
<th>num$^{non sd}_{fsdao}$</th>
<th>$d_{sd,I}$</th>
<th>num$^{sd,I}_{([4],[6],[10],[11])}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1NE</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2E</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3E</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3E</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3NE</td>
<td>235</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4E</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4NE</td>
<td>≥ 10 [7]</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>$\leq 4NE$</td>
<td>?</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>$5NE$</td>
<td>≥ 4 [7]</td>
<td>4</td>
<td>101</td>
</tr>
<tr>
<td>11</td>
<td>$\leq 5NE$</td>
<td>?</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>$6NE$</td>
<td>≥ 1 [7]</td>
<td>5</td>
<td>63</td>
</tr>
<tr>
<td>13</td>
<td>$\leq 6NE$</td>
<td>?</td>
<td>5</td>
<td>≥ 9</td>
</tr>
<tr>
<td>14</td>
<td>6 or 7NE</td>
<td>594 [7] or ?</td>
<td>5 or 6</td>
<td>≥ 5 or ?</td>
</tr>
</tbody>
</table>

the set of odd codes in \mathcal{C} by OC. We call an f.s.d.a. odd code balanced if it contains the same number of even codes and odd codes. By Theorem 2.3 we have

$$W_{\mathcal{C}}(x, y) = \sum_{k=0}^{[n/2]} a_i (x + y)^{n-2k} (y(x - y))^k$$ (3)

for some a_i. And

$$W_{\mathcal{C}}(1, -1) = |\text{EC}| - |\text{OC}|.$$ (4)

From (3) and (4), we have

Proposition 4.1. If \mathcal{C} is a f.s.d.a. odd code over \mathbb{F}_4 with odd length is balanced.

Let \mathcal{C} be a near-extremal f.s.d.a. odd code over \mathbb{F}_4 with even length n. Then the coefficients $a_0, a_1, \ldots, a_{n/2-1}$ in (3) are uniquely determined. We denote the coefficient $a_{\frac{n}{2}}$ in (3) as α. Then

$$W_{\mathcal{C}}(1, -1) = \alpha (-2)^{\frac{n}{2}} = (-1)^{\frac{n}{2}} \cdot \alpha \cdot 2^{\frac{n}{2}}.$$

So we have

$$|\text{EC}| - |\text{OC}|$$ if and only if $\alpha = 0.$ (5)

From (5), we have

Proposition 4.2. The weight distribution of a near-extremal f.s.d.a. odd code over \mathbb{F}_4 with even length and $|\text{EC}| = |\text{OC}|$ is unique, and is given by (3) with $\alpha (= a_{\frac{n}{2}}) = 0.$

9
Now we want to calculate the possible values of α. Before we do that, we need the following results which are stated in [17].

A binary linear code is called even if it only contains even weight vectors. A doubly-even (d.e.) vector has weight $\equiv 0 \pmod{4}$, while a singly-even (s.e.) vector has weight $\equiv 2 \pmod{4}$. A hyperbolic plane is a two dimensional space generated by two doubly-even vectors which are not orthogonal to each other. An anisotropic plane is generated by two singly-even non-orthogonal vectors. We write $C_1 \perp C_2$ to mean the vector space direct sum of two codes C_1 and C_2 which are orthogonal to each other. If C is a code, let $R(C)$ denote the largest doubly-even subcode of $C \cap C^\perp$ and let $r = \dim R(C)$. Let a denote the number of d.e. vectors in C and b denote the number of s.e. vectors in C. Then every even binary linear $[n, k]$ code C is one of three types.

(i) Hyperbolic Type. Here $C = R(C) \perp H_{2m}$ where H_{2m} is the orthogonal sum of m hyperbolic planes. Clearly $k = r + 2m$. In this case the following holds

\[
a = 2^r (2^{2m-1} + 2^{m-1}), \\
b = 2^r (2^{2m-1} - 2^{m-1}).
\]

(ii) Anisotropic Type. Here $C = R(C) \perp H_{2(m-1)} \perp A$ where $H_{2(m-1)}$ is the orthogonal sum of $(m-1)$ hyperbolic planes and A is an anisotropic plane. Again $k = r + 2m$. Further,

\[
a = 2^r (2^{2m-1} - 2^{m-1}), \\
b = 2^r (2^{2m-1} + 2^{m-1}).
\]

(iii) Odd Anisotropic Type. Here $C = R(C) \perp H_{2m} \perp < x >$ where x is a singly-even vector. Now $k = r + 2m + 1$ and $a = b = 2^{k-1}$.

Now we are ready to prove the following theorem.

Theorem 4.3. Let C be an $(n, 2^n, \left[\frac{n}{2}\right])$ near-extremal f.s.d.a. odd code over \mathbb{F}_4 with even length. Then the possible coefficient $\alpha (= a_\frac{n}{2})$ in (3) is given by

\[\alpha = 0 \quad \text{or} \quad \pm 2^i \quad \text{for} \quad i = 0, 1, 2, \ldots, \frac{n}{2} - 1.\]

Furthermore, $|EC|$ and $|OC|$ are given by

\[|EC| = 2^{n-1} + \alpha 2^{\frac{n}{2} - 1}, \]
\[|OC| = 2^{n-1} - \alpha 2^{\frac{n}{2} - 1}.\]

Proof. If $\alpha = 0$, then the theorem holds. So, we assume that $\alpha \neq 0$. Define $\phi : \mathbb{F}_4 \to \mathbb{F}_2^3$ by

\[\phi(0) = (0, 0, 0), \]
\[\phi(1) = (1, 1, 0), \]
\[\phi(\omega) = (1, 0, 1), \]
\[\phi(\omega) = (0, 1, 1).\]
Define $\phi_n : \mathbb{F}_4^n \to \mathbb{F}_2^{3n}$ by

$$\phi_n(a_1, a_2, \ldots, a_n) = (\phi(a_1), \phi(a_2), \ldots, \phi(a_n)).$$

Then ϕ_n is \mathbb{F}_2-linear, and $\phi_n(\mathcal{C})$ is a $[3n, n, 2[\frac{n}{2}]$ binary linear even code. Let a be the number of doubly-even codes in $\phi_n(\mathcal{C})$ and b be the number of singly-even codes in $\phi_n(\mathcal{C})$. Then we have $|\mathcal{EC}| = a$ and $|\mathcal{OC}| = b$. Using the notations before Theorem 4.3, we have

$$n = r + 2m,$$

$$a - b = \pm 2^{r + m} = (-1)^{\frac{r}{2}} a 2^{\frac{n}{2}},$$

$$a + b = 2^n.$$

So, r is even and

$$a = 2^{n-1} + (-1)^{\frac{n}{2}} a 2^{\frac{n}{2} - 1} \text{ and } b = 2^{n-1} - (-1)^{\frac{n}{2}} a 2^{\frac{n}{2} - 1}.$$

And

$$\alpha = \pm (-1)^{\frac{n}{2}} 2^{\frac{n}{2}}, \left(\frac{r}{2} = 0, 1, \ldots, \frac{n}{2}\right).$$

Now we only have to prove that $\frac{r}{2} \neq \frac{n}{2}$. Suppose $\frac{r}{2} = \frac{n}{2}$. If $\phi_n(\mathcal{C})$ is Hyperbolic Type, then $b = 0$. But this is impossible since \mathcal{C} is f.s.d.a. odd code over \mathbb{F}_4. If $\phi_n(\mathcal{C})$ is Anisotropic Type, then $\phi_n(\mathcal{C}) = R(\phi_n(\mathcal{C}))$. This is also impossible. So, $\frac{r}{2} \neq \frac{n}{2}$. \hfill \square

Now we state some possible weight enumerators with $\alpha = a_2$ for small code length.

- $n = 6$:
 $W(1, y) = 1 + (8 + \alpha)y^3 + (21 - 3\alpha)y^4 + (24 + 3\alpha)y^5 + (10 - \alpha)y^6$. The 235 f.s.d.a. odd codes over \mathbb{F}_4 of length 6 with $d = 3$ in Section 3 produce all possible values of $\alpha = -4, -2, -1, 0, 1, 2, 4$. We give only seven codes with each α from -4 to 4, denoted by $\mathcal{C}_{6,1}, \mathcal{C}_{6,2}, \ldots, \mathcal{C}_{6,7}$, respectively. Their generator matrices are given in Table 2.

- $n = 8$:
 $W(1, y) = 1 + (26 + \alpha)y^4 + (64 - 4\alpha)y^5 + (72 + 6\alpha)y^6 + (64 - 4\alpha)y^7 + (29 + \alpha)y^8$. It is shown [7] that there exist f.s.d.a. odd codes over \mathbb{F}_4 with $\alpha = -8, -2, 1, 4$.

- $n = 10$:
 $W(1, y) = 1 + (92 + \alpha)y^5 + (170 - 5\alpha)y^6 + (200 + 10\alpha)y^7 + (295 - 10\alpha)y^8 + (220 + 5\alpha)y^9 + (46 - \alpha)y^{10}$. It is shown [7] that there exist f.s.d.a. odd codes over \mathbb{F}_4 with $\alpha = -2, 1, 4$.

- $n = 12$:
 $W(1, y) = 1 + (332 + \alpha)y^6 + (384 - 6\alpha)y^7 + (525 + 15\alpha)y^8 + (1280 - 20\alpha)y^9 + (1020 + 15\alpha)y^{10} + (384 - 6\alpha)y^{11} + (170 + \alpha)y^{12}$. It is shown [7] that there exist f.s.d.a. odd codes over \mathbb{F}_4 with $\alpha = -2$.

- $n = 14$:
 $W(1, y) = 1 + (1220 + \alpha)y^7 + (469 - 7\alpha)y^8 + (1596 + 21\alpha)y^9 + (5348 - 35\alpha)y^{10} + (3388 + 35\alpha)y^{11} + (2226 - 21\alpha)y^{12} + (1988 + 7\alpha)y^{13} + (148 - \alpha)y^{14}$. No near-extremal f.s.d.a. odd code over \mathbb{F}_4 of this length is known.

11
Table 2: Near-extremal formally self-dual additive odd codes over \mathbb{F}_4 of length 6 with $\alpha = -4, -2, -1, 0, 1, 2, 4$, respectively

$$G(C_{6,1}) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & w & w \\ 0 & 1 & 0 & w & w & 0 \\ 0 & 0 & 1 & w^2 & w & w^2 \\ w & w & 0 & 0 & 1 & 0 \\ w & 0 & w & 1 & 0 & 0 \end{bmatrix}, \quad G(C_{6,2}) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & w & w \\ 0 & 1 & 0 & w & w & 0 \\ 0 & 0 & 1 & w^2 & w^2 & w^2 \\ w & w & 0 & 0 & 1 & 0 \\ w & 0 & w & 1 & 0 & 0 \end{bmatrix},$$

$$G(C_{6,3}) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & w & w \\ 0 & 1 & 0 & w & w & 0 \\ 0 & 0 & 1 & w & w & 0 \\ w & w & 0 & 1 & 1 & 0 \\ w & 0 & w & w & 0 & 0 \end{bmatrix}, \quad G(C_{6,4}) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & w & w \\ 0 & 1 & 0 & w & w & 0 \\ 0 & 0 & 1 & w & w & 0 \\ w & w & 0 & 0 & 1 & 0 \\ w & 0 & w & 1 & 0 & 0 \end{bmatrix},$$

$$G(C_{6,5}) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & w & w \\ 0 & 1 & 0 & w & w & 0 \\ 0 & 0 & 1 & w^2 & w^2 & w^2 \\ w & w & 0 & 1 & 0 & 0 \\ w & 0 & w & 0 & 1 & 0 \end{bmatrix}, \quad G(C_{6,6}) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & w & w \\ 0 & 1 & 0 & w & w & 0 \\ 0 & 0 & 1 & w & w & 0 \\ w & w & 0 & w^2 & 0 & 0 \\ w & 0 & w & w^2 & 0 & 0 \end{bmatrix},$$

$$G(C_{6,7}) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & w & w \\ 0 & 1 & 0 & w & 1 & 0 \\ 0 & 0 & 1 & w & 0 & 0 \\ w & w & 0 & w & 2 & 0 \\ w & 0 & w & w & 0 & 0 \end{bmatrix}. $$
5 Nonexistence of near-extremal f.s.d.a. odd codes over F_4

We study whether there exists a near-extremal f.s.d.a. odd code over F_4 of length $n \geq 15$. In fact, we have the following.

Theorem 5.1. Let C be an $(n, 2^n, d)$ f.s.d.a. odd code over F_4. If $n = 18$ or $n \geq 20$, then $d < \lfloor \frac{n}{2} \rfloor$. In other words, there is no near-extremal f.s.d.a. odd code over F_4 if $n = 18$ or $n \geq 20$.

Proof. We prove this theorem by showing that $A_{\lfloor \frac{n}{2} \rfloor + 2} < 0$ if $n = 18$ or $n \geq 20$. Define $m = \lfloor \frac{n}{2} \rfloor$. Suppose C be a near-extremal f.s.d.a. odd code with $d = m$. From (1) we have the following weight enumerator of C.

$$
\sum_{i=0}^{m} a_i (1 + y)^{n-2i}(y(1-y))^i = 1 + A_m y^m + \cdots + A_n y^n.
$$

Using the B"{u}rman-Lagrange formula [18], we have the following equation.

$$
\frac{1}{(1+y)^n} = \sum_{i=0}^{m} a_i \left(\frac{y(1-y)}{(1+y)^2} \right)^i - \frac{1}{(1+y)^n} (A_m y^m + \cdots + A_n y^n)
= \sum_{i=0}^{\infty} \alpha_i \left(\frac{y(1-y)}{(1+y)^2} \right)^i,
$$

where $\alpha_0 = 1$ and for $i \geq 1$

$$
\alpha_i = \frac{1}{i} \left[\text{coeff. of } y^{i-1} \text{ in } \left\{ \left(\frac{1}{(1+y)^n} \right) \left(\frac{y(1+y)^2}{1-y} \right)^i \right\} \right].
$$

(6)

We have

$$
a_i = \alpha_i, (i = 0, 1, 2, \ldots, m - 1)
$$

and

$$
\sum_{i=m}^{\infty} \alpha_i \left(\frac{y(1-y)}{(1+y)^2} \right)^i = a_m \left(\frac{y(1-y)}{(1+y)^2} \right)^m = \frac{1}{(1+y)^n} (A_m y^m + \cdots + A_n y^n).
$$

(7)

The left hand side of (7) is equal to

$$
\alpha_m y^m + (\alpha_{m+1} - 3mA_m) y^{m+1} + \left(\alpha_{m+2} - (3m+3)\alpha_{m+1} + \left(\frac{2m+1}{2} \right) + 2m^2 + \left(\frac{m}{2} \right) \alpha_m \right) y^{m+2} + O(y^{m+3}).
$$

(8)
The right hand side of (7) is equal to
\[
(a_m - A_m) y^m + (-3ma_m + nA_m - A_{m+1}) y^{m+1} \\
+ \left(\left(\binom{2m+1}{2} + 2m^2 + \binom{m}{2} \right) a_m - \left(\frac{n+1}{2} \right) A_m + nA_{m+1} - A_{m+2} \right) y^{m+2} \\
+ O(y^{m+3}).
\] (9)

From (8) and (9), we have
\[
A_m = a_m - \alpha_m, \\
A_{m+1} = -\alpha_{m+1} + (n - 3m) A_m,
\] (10)
\[
A_{m+2} = A_m \left\{ - \left(\frac{n+1}{2} \right) + n(n-3m) + \left(\frac{2m+1}{2} \right) + 2m^2 + \binom{m}{2} \right\} \\
+ (3m + 3 - n) \alpha_{m+1} - \alpha_{m+2}.
\] (11)

Since \(A_{m+1} \geq 0 \), we have the following from (10).
\[
A_m \leq \frac{\alpha_{m+1}}{n - 3m}.
\] (12)

Now we want to show that \(A_{m+2} < 0 \). We prove this fact by two cases, i.e., \(n = 2m \) and \(n = 2m + 1 \). In the first, we assume that \(n = 2m \). Then from (11), we have the following using (12).
\[
A_{m+2} = A_m \cdot \frac{m(m-1)}{2} + (m+3) \alpha_{m+1} - \alpha_{m+2} \\
\leq -\frac{\alpha_{m+1}}{m} \cdot \frac{m(m-1)}{2} + (m+3) \alpha_{m+1} - \alpha_{m+2} \\
= \frac{m+7}{2} \cdot \alpha_{m+1} - \alpha_{m+2}.
\] (13)

It is enough to show that
\[
\frac{m+7}{2} \cdot \alpha_{m+1} < \alpha_{m+2}.
\]

From (6), we have the following.
\[
\alpha_{m+1} = \frac{-2m}{m+1} \left(\binom{2m-1}{m-1} + \binom{2m}{m} \right),
\]
\[
\alpha_{m+2} = \frac{-2m}{m+2} \left(\binom{2m-1}{m-2} + 3 \binom{2m}{m-1} + 3 \binom{2m+1}{m} + \binom{2m+2}{m+1} \right).
\]

It is sufficient to prove that
\[
\frac{m+7}{2} (m+2) \left(\binom{2m-1}{m-1} + \binom{2m}{m} \right) \\
> (m+1) \left(\binom{2m-1}{m-2} + 3 \binom{2m}{m-1} + 3 \binom{2m+1}{m} + \binom{2m+2}{m+1} \right).
\]
By using the following well-known identity
\[
\binom{n}{0} + \binom{n+1}{1} + \cdots + \binom{n+r}{r} = \binom{n+r+1}{r},
\] (14)
we have
\[
\binom{2m-1}{m-2} + 3\binom{2m}{m-1} + 3\binom{2m+1}{m} < 3\binom{2m+2}{m} < 3\binom{2m+2}{m+1}.
\]
So, it is sufficient to prove that
\[
\frac{m+7}{2}\binom{2m}{m} > 4\binom{2m+2}{m+1}.
\]
It is sufficient to prove that
\[
m\binom{2m}{m} > 8\binom{2m+2}{m+1}.
\] (15)
(15) is equivalent to
\[
m(m-31) > 16.
\] (16)
So, if \(m \geq 32 \), then \(A_{m+2} < 0 \). For \(9 \leq m \leq 31 \), we can check directly \(A_{m+2} < 0 \) from (13). Now we assume that \(n = 2m+1 \). This case is similar to the case \(n = 2m \).
\[
A_{m+2} = A_m \cdot \frac{m(m-3)}{2} + (m+2)\alpha_{m+1} - \alpha_{m+2}
\]
\[
\leq \frac{\alpha_{m+1} \cdot m(m-3)}{n-3m} + (m+2)\alpha_{m+1} - \alpha_{m+2}
\]
\[
= \alpha_{m+1} \cdot \left(m + 2 + \frac{m(m-3)}{2(-m+1)} \right) - \alpha_{m+2}.
\] (17)
It is enough to show that
\[
\alpha_{m+1} \cdot \left(m + 2 + \frac{m(m-3)}{2(-m+1)} \right) < \alpha_{m+2}.
\]
From (6), we have the following.
\[
\alpha_{m+1} = -\frac{(2m+1)}{m+1} \binom{2m}{m},
\]
\[
\alpha_{m+2} = -\frac{(2m+1)}{m+2} \left(\binom{2m}{m-1} + 2\binom{2m+1}{m} + \binom{2m+2}{m+1} \right).
\]
It is sufficient to prove that
\[
\binom{2m}{m} \left(m + 2 + \frac{m(m-3)}{2(-m+1)} \right)
\]
\[
> \left(\binom{2m}{m-1} + 2\binom{2m+1}{m} + \binom{2m+2}{m+1} \right).
\]
Note that
\[m + 2 + \frac{m(m - 3)}{2(-m + 1)} > \frac{m}{2}. \]
So, it is sufficient to prove that
\[\left(\frac{2m}{m} \right) \frac{m}{2} > 3 \left(\frac{2m + 2}{m + 1} \right). \]
So, if \(m \geq 24 \), then \(A_{m+2} < 0 \). For \(10 \leq m \leq 23 \), we can check directly \(A_{m+2} < 0 \) from (17).
Now we have proved the theorem. \(\Box \)

6 Nonexistence of near-extremal formally self-dual binary linear codes

In this section we prove nonexistence of near-extremal \([n, \frac{n}{2}, 2[\frac{n}{8}]]\) formally self-dual (f.s.d.) binary linear codes using a similar method to Section 5.

Theorem 6.1. Let \(C \) be an \([n, \frac{n}{2}, d]\) f.s.d. binary linear code. Let \(n = 8t + 2l \) (\(l = 1, 2, 3 \)).

(i) If \(l = 1 \) and \(t \geq 12 \), then \(d < 2[\frac{n}{8}] \).

(ii) If \(l = 2 \) and \(t \geq 13 \), then \(d < 2[\frac{n}{8}] \).

(iii) If \(l = 3 \) and \(t \geq 14 \), then \(d < 2[\frac{n}{8}] \).

In other words, there is no near-extremal f.s.d. binary linear code if \(l = 1 \) and \(t \geq 12 \), if \(l = 2 \) and \(t \geq 13 \), or if \(l = 3 \) and \(t \geq 14 \).

Remark 6.2. For completeness, we present the following. Let \(C \) be an \([n, \frac{n}{2}, d]\) f.s.d. binary linear code. Let \(n = 8t + 2l \) (\(l = 0, 1, 2, 3 \)). Then combining the above theorem and the results in [8] proving the conjecture of [15] for \(t \geq 9 \), we have that if \(l = 0 \) and \(t \geq 9 \), if \(l = 1 \) and \(t \geq 12 \), if \(l = 2 \) and \(t \geq 13 \), or if \(l = 3 \) and \(t \geq 14 \), then
\[d < 2 \left[\frac{n}{8} \right]. \]

Proof. (of Theorem 6.1) Suppose \(C \) be a near-extremal f.s.d. binary code with \(d = 2t \). We have the following weight enumerator.
\[W_C(1, y) = \sum_{k=0}^{t} c_k f^{4t+l-4k} y^k = 1 + \sum_{k=t}^{4t+l} A_{2k} y^k, \]
where \(f = 1 + y, g = y(1 - y)^2 \), and \(c_k \) are integers. Using the Bürman-Lagrange formula [18], we have the following equation.
\[f^{-4t-l} = \sum_{k=0}^{t} c_k \phi^k - f^{-4t-l} \sum_{k=t}^{4t+l} A_{2k} y^k \]
\[= \sum_{s=0}^{\infty} \alpha_s \phi^s, \]
\[16 \]
where \(\varphi = \frac{g}{f t}, \alpha_0 = 1 \) and for \(i \geq 1 \)

\[
\alpha_s = \frac{1}{s} \left[\text{coeff. of } y^{s-1} \text{ in } \left(f^{-4t+l} \frac{y}{\varphi} \right)^s \right]. \tag{18}
\]

We have

\[
\alpha_i = c_i, \quad (0 \leq i < t).
\]

and

\[
\sum_{s=t}^{\infty} \alpha_s f^{4t-4s} g^s = c_t g^t - f^{-l} \sum_{k=t}^{4t+l} A_{2k} y^k. \tag{19}
\]

The left hand side of (19) is equal to

\[
\alpha_t y^t + (-2t\alpha_t + \alpha_{t+1}) y^{t+1} + \left(\frac{2t}{2} \alpha_t + (-2t - 6)\alpha_{t+1} + \alpha_{t+2} \right) y^{t+2} + O(y^{t+3}). \tag{20}
\]

The right hand side of (19) is equal to

\[
(c_t - A_{2t}) y^t + (-2tc_t - (-lA_{2t} + A_{2t+2})) y^{t+1} + \left(c_t \left(\frac{2t}{2} \right) - \left(A_{2t} \left(\frac{l+1}{2} \right) - lA_{2t+2} + A_{2t+4} \right) \right) y^{t+2} + O(y^{t+3}). \tag{21}
\]

From (20) and (21), we have

\[
A_{2t} = c_t - \alpha_t,
\]

\[
A_{2t+2} = (-2t + l)A_{2t} - \alpha_{t+1},
\]

\[
A_{2t+4} = A_{2t} \left\{ \left(\frac{2t}{2} \right) - \left(\frac{l+1}{2} \right) + l^2 - 2lt \right\} + (2t + 6 - l)\alpha_{t+1} - \alpha_{t+2}. \tag{23}
\]

Since \(A_{2t+2} \geq 0 \), we have the following from (22).

\[
A_{2t} \leq \frac{\alpha_{t+1}}{-2t + l}. \tag{24}
\]

By (23) and (24), we have the following.

\[
A_{2t+4} \leq \frac{\alpha_{t+1}}{-2t + l} \left\{ \left(\frac{2t}{2} \right) - \left(\frac{l+1}{2} \right) + l^2 - 2lt \right\} + (2t + 6 - l)\alpha_{t+1} - \alpha_{t+2}. \tag{25}
\]

We want to show that \(A_{2t+4} < 0 \). Since \(A_{2t} > 0 \), we have \(\alpha_{t+1} < 0 \) from (24). So in (25), we have

\[
\frac{\alpha_{t+1}}{-2t + l} \left\{ \left(\frac{2t}{2} \right) - \left(\frac{l+1}{2} \right) + l^2 - 2lt \right\} < \frac{\alpha_{t+1}}{-2t} (2t^2 - 2t) = \alpha_{t+1}(-t + 1),
\]

\[
\frac{\alpha_{t+1}}{-2t + l} \left\{ \left(\frac{2t}{2} \right) - \left(\frac{l+1}{2} \right) + l^2 - 2lt \right\} + (2t + 6 - l)\alpha_{t+1} \leq \alpha_{t+1}(-t + 1 + 2t + 6 - l) \leq \alpha_{t+1}(t + 4).
\]

It is enough to show that

\[
\alpha_{t+1}(t + 4) > (-\alpha_{t+2}).
\]

We present \(\alpha_{t+1}, \alpha_{t+2} \) for each \(l = 1, 2, 3 \) by (18) in the following.
\(l = 1 \)

\[
\alpha_{t+1} = \frac{-4t - 1}{t + 1} \left\{ \binom{3t + 1}{t} + 2 \binom{3t}{t-1} + \binom{3t - 1}{t-2} \right\},
\]

\[
\alpha_{t+2} = \frac{-4t - 1}{t + 2} \left\{ \binom{3t + 4}{t + 1} + 6 \binom{3t + 3}{t} + 15 \binom{3t + 2}{t - 1} + 20 \binom{3t + 1}{t - 2} + 15 \binom{3t}{t - 3} + 6 \binom{3t - 1}{t - 4} + \binom{3t - 2}{t - 5} \right\}.
\]

\(l = 2 \)

\[
\alpha_{t+1} = \frac{-4t - 2}{t + 1} \left\{ \binom{3t + 1}{t} + \binom{3t}{t-1} \right\},
\]

\[
\alpha_{t+2} = \frac{-4t - 2}{t + 2} \left\{ \binom{3t + 4}{t + 1} + 5 \binom{3t + 3}{t} + 10 \binom{3t + 2}{t - 1} + 10 \binom{3t + 1}{t - 2} + 5 \binom{3t}{t - 3} + \binom{3t - 1}{t - 4} \right\}.
\]

\(l = 3 \)

\[
\alpha_{t+1} = \frac{-4t - 3}{t + 1} \binom{3t + 1}{t},
\]

\[
\alpha_{t+2} = \frac{-4t - 3}{t + 2} \left\{ \binom{3t + 4}{t + 1} + 4 \binom{3t + 3}{t} + 6 \binom{3t + 2}{t - 1} + 4 \binom{3t + 1}{t - 2} + \binom{3t}{t - 3} \right\}.
\]

For all \(l = 1, 2, 3 \), we have the following

\[
-\alpha_{t+1} \geq \frac{4t + 1}{t + 1} \binom{3t + 1}{t},
\]

\[
-\alpha_{t+2} \geq \frac{4t + 3}{t + 2} \left\{ \binom{3t + 4}{t + 1} + 6 \binom{3t + 3}{t} + 15 \binom{3t + 2}{t - 1} + 20 \binom{3t + 1}{t - 2} + 15 \binom{3t}{t - 3} + 6 \binom{3t - 1}{t - 4} + \binom{3t - 2}{t - 5} \right\}.
\]

Note the following simple inequalities. In the first, by (14) we have

\[
20 \binom{3t + 1}{t - 2} + 15 \binom{3t}{t - 3} + 6 \binom{3t - 1}{t - 4} + \binom{3t - 2}{t - 5} \leq 20 \binom{3t + 2}{t - 2}.
\]
And
\[
\binom{3t + 2}{t - 2} \leq \frac{1}{2} \binom{3t + 2}{t - 1},
\]
\[
\binom{3t + 2}{t - 1} \leq \frac{1}{3} \binom{3t + 3}{t},
\]
\[
\binom{3t + 3}{t} \leq \frac{1}{3} \binom{3t + 4}{t + 1}.
\]
Thus
\[
\binom{3t + 4}{t + 1} + 6 \binom{3t + 3}{t} + 15 \binom{3t + 2}{t - 1} + 20 \binom{3t + 1}{t - 2}
\]
\[
+ 15 \binom{3t}{t - 3} + 6 \binom{3t - 1}{t - 4} + \binom{3t - 2}{t - 5} \leq 6 \binom{3t + 4}{t + 1}.
\]
It is enough to show that
\[
(t + 4)^{\frac{4t - 1}{t + 1}} \binom{3t + 1}{t} > \frac{4t + 3}{t + 2} \cdot 6 \cdot \frac{3t + 4}{t + 1}.
\]
It is enough to show that
\[
(t + 4)(4t + 1) \frac{(3t + 1)!}{(2t + 1)!t!} > 6 \cdot (4t + 3) \cdot \frac{(3t + 4)!}{(2t + 3)!(t + 1)!}.
\]
It is enough to show that
\[
(t + 4)(4t + 1)(2t + 3)(2t + 2) > 18 \cdot (4t + 3)(3t + 4)(3t + 2).
\]
It is enough to show that
\[
16t^4 > 18 \cdot 5t \cdot 4t \cdot 4t.
\]
If \(t > 90 \), then (26) holds. For the remaining finite case, we can check \(A_{2t+4} < 0 \) by direct calculation in (25). \(\square \)

7 Nonexistence of near-extremal (formally) self-dual codes

The methods of Sections 5 and 6 can be applied to Type II, Type III, and Type IV self-dual codes so that we can obtain similar results. But in this section, we adopt S. Zhang’s approach in [20] to investigate these self-dual codes. So, the organization of this section is similar to the one in [20]. In [20], the existence problem of extremal self-dual codes is treated by a systematic way with unified notations. In this section, we combine our idea of Sections 5 and 6 with Zhang’s systematic approach and unified notations to solve the nonexistence problem of near-extremal (formally) self-dual codes.
We are interested in the six types of (formally) self-dual codes, i.e., binary f.s.d. even codes, Type II self-dual codes, Type III self-dual codes, Type IV self-dual codes, additive self-dual even codes over \mathbb{F}_4, and f.s.d.a. odd codes over \mathbb{F}_4. The weight enumerators $W(X,Y)$ of these (formally) self-dual codes are generated by the following two Gleason polynomials respectively [19].

(i) binary f.s.d. even code : $f = X^2 + Y^2, g = X^2Y^2(X^2 - Y^2)^2$,
(ii) Type II self-dual code : $f = X^8 + 14X^4Y^4, g = X^4Y^4(X^4 - Y^4)^4$,
(iii) Type III self-dual code : $f = X^4 + 8XY^3, g = Y^3(X^3 - Y^3)^3$,
(iv) Type IV self-dual code : $f = X^2 + 3Y^2, g = Y^2(X^2 - Y^2)^2$,
(iv)′ additive self-dual even code over \mathbb{F}_4 : $f = X^2 + 3Y^2, g = Y^2(X^2 - Y^2)^2$,
(v) f.s.d.a. odd code over \mathbb{F}_4 : $f = X + Y, g = Y(X - Y)$.

Definition 7.1. A (formally) self-dual code of length n with minimum distance d below is called near-extremal.

(i) binary f.s.d. even code : $d = 2[\frac{n}{8}]$,
(ii) Type II self-dual code : $d = 4[\frac{n}{24}]$,
(iii) Type III self-dual code : $d = 3[\frac{n}{12}]$,
(iv) Type IV self-dual code : $d = 2[\frac{n}{6}]$,
(iv)′ additive self-dual even code over \mathbb{F}_4 : $d = 2[\frac{n}{6}]$,
(v) f.s.d.a. odd code over \mathbb{F}_4 : $d = [\frac{n}{2}]$.

Now we state the main theorem of this section.

Theorem 7.2. There is no near-extremal code with length n for

(i) binary f.s.d. even code : if $n = 8i$ ($i \geq 9$), $8i + 2$ ($i \geq 12$), $8i + 4$ ($i \geq 13$), $8i + 6$ ($i \geq 14$),
(ii) Type II self-dual code : if $n = 24i$ ($i \geq 315$), $24i + 8$ ($i \geq 320$), $24i + 16$ ($i \geq 325$),
(iii) Type III self-dual code : if $m = 12i$ ($i \geq 147$), $12i + 4$ ($i \geq 150$), $12i + 8$ ($i \geq 154$),
(iv) Type IV self-dual code : if $m = 6i$ ($i \geq 38$), $6i + 2$ ($i \geq 41$), $6i + 4$ ($i \geq 43$),
(iv)′ additive self-dual even code over \mathbb{F}_4 : if $m = 6i$ ($i \geq 38$), $6i + 2$ ($i \geq 41$), $6i + 4$ ($i \geq 43$),
(v) f.s.d.a. odd code over \mathbb{F}_4 : if $n = 2i$ ($i \geq 8$), $2i + 1$ ($i \geq 10$).

In the following proof of Theorem 7.2, we omit Type (iv)′ additive codes as they have the same Gleason polynomials as Type IV self-dual codes so that the proofs of (iv) and (iv)′ are the same.
7.1 Proof of Theorem 7.2

To obtain a unified notation for all the five types we replace X by 1 and Y^w by y, and give the following definition: $f = 1 + \alpha y + \delta y^2$, $g = y(1 - y)^w$, where

(i) binary f.s.d. even code : $w = 2, R = 4, S = 2, \alpha = 1, \delta = 0,$
(ii) Type II self-dual code : $w = 4, R = 3, S = 8, \alpha = 14, \delta = 1,$
(iii) Type III self-dual code : $w = 3, R = 3, S = 4, \alpha = 8, \delta = 0,$
(iv) Type IV self-dual code : $w = 2, R = 3, S = 2, \alpha = 3, \delta = 0,$
(v) f.s.d.a. odd code over \mathbb{F}_4 : $w = 1, R = 2, S = 1, \alpha = 1, \delta = 0.$

With the unified notation, Gleason’s theorem and its generalization now state that, in all five types, the weight enumerator of a near-extremal code C of length $n = Sj$ is given by

$$W(1, y) = \sum_{k=0}^{m} a_k f^{j-Rk} g^k = 1 + \sum_{k=m}^{[n/w]} A_{wk} y^k,$$

where $m = [j/R] = [n/RS]$, the a_k are integers. Using the Bürmann-Lagrange theorem [18], we have

$$f^{-j} = \sum_{k=0}^{m} a_k \left(\frac{g}{f^R} \right)^k - f^{-j} \sum_{k=m}^{[n/w]} A_{wk} y^k = \sum_{s=0}^{\infty} \alpha_s \varphi^s,$$

where $\varphi = \frac{g}{f^R}$, $\alpha_0 = 1$, and for $s \geq 1$

$$\alpha_s = \frac{-j}{s!} \left[\frac{\alpha + 2\delta y}{d\alpha y^{s-1}} \right]^{y=0}.$$

And $a_s = \alpha_s, (s = 0, 1, 2, \ldots, m - 1)$. So we have

$$\sum_{s=m}^{\infty} \alpha_s f^{j-Rs} g^s = a_m f^{j-Rm} g^m - \sum_{k=m}^{[n/w]} A_{wk} y^k. \tag{27}$$

Let $v = j - Rm, (v = 0, 1, 2, \ldots, R - 1)$. We denote the coefficient of y^m as $[y^m]$. Then in the left hand side of (27), we have

$$[y^m] = \alpha_m,$$

$$[y^{m+1}] = \alpha_m \{v\alpha - w\} + \alpha_{m+1},$$

$$[y^{m+2}] = \alpha_m \left\{ v\delta - \left(\frac{v}{2} \right) \alpha^2 - wmv\alpha + \left(\frac{wm}{2} \right) \right\} + \alpha_{m+1} \{ (v-R)\alpha - w(m+1) \} + \alpha_{m+2}.$$
And in the right hand side of (27), we have
\[
\begin{align*}
[y^m] &= a_m - A_{wm}, \\
[y^{m+1}] &= a_m \{v \alpha - w m\} - A_{w(m+1)}, \\
[y^{m+2}] &= a_m \left\{ v \delta - \left(\frac{v}{2}\right) \alpha^2 - \alpha m v \alpha + \left(\frac{w m}{2}\right) \right\} - A_{w(m+2)}.
\end{align*}
\]
Therefore,
\[
\begin{align*}
A_{wm} &= a_m - \alpha_m, \\
A_{w(m+1)} &= A_{wm} \{v \alpha - w m\} - \alpha_{m+1}, \\
A_{w(m+2)} &= A_{wm} \left\{ v \delta - \left(\frac{v}{2}\right) \alpha^2 - \alpha m v \alpha + \left(\frac{w m}{2}\right) \right\} \\
&\quad - \alpha_{m+1} \left\{ (v - R) \alpha - w(m + 1) \right\} - \alpha_{m+2}.
\end{align*}
\] (28)

Since \(A_{w(m+1)} \geq 0\) and \(v \alpha - w m < 0\), from (28) we have
\[
A_{wm} \leq \frac{\alpha_{m+1}}{v \alpha - w m}.
\] (30)

By (29) and (30), we have
\[
A_{w(m+2)} \leq \frac{\alpha_{m+1}}{v \alpha - w m} \left\{ v \delta - \left(\frac{v}{2}\right) \alpha^2 - \alpha m v \alpha + \left(\frac{w m}{2}\right) \right\} \\
&\quad - \alpha_{m+1} \left\{ (v - R) \alpha - w(m + 1) \right\} - \alpha_{m+2} \\
&= -\alpha_{m+2} + \alpha_{m+1} \left\{ \frac{1}{v \alpha - w m} \left(v \delta - \left(\frac{v}{2}\right) \alpha^2 - \alpha m v \alpha + \left(\frac{w m}{2}\right) \right) \right. \\
&\quad \left. + (R - v) \alpha + w(m + 1) \right\}.
\]

Let
\[
E(m, v) = \left\{ \frac{1}{v \alpha - w m} \left(v \delta - \left(\frac{v}{2}\right) \alpha^2 - \alpha m v \alpha + \left(\frac{w m}{2}\right) \right) + (R - v) \alpha + w(m + 1) \right\}.
\]
Then, we have the following lemma.

Lemma 7.3. If \(\frac{\alpha_{m+2}}{\alpha_{m+1}} < E(m, v)\), then \(A_{w(m+2)} < 0\).

Let
\[
A(y, v) = (\alpha + 2 \delta y)(1 + \alpha y + \delta y^2)^{R-v-1},
\]
\[
B(y, v) = (\alpha + 2 \delta y)(1 + \alpha y + \delta y^2)^{2R-v-1},
\]

and
\[
D(m, v) = \left(w + 1 \right)^{w+1} \frac{m+1}{w} \frac{\frac{m+1}{(w+1)(m+2)-(1+\delta)(2R-v)}}{A_{w(m+2)-(1+\delta)(R-v)}}, v.
\] (31)

Now we need the following two lemmas from [20].
Lemma 7.4. $\frac{\alpha_{m+2}}{\alpha_{m+1}} < D(m, v)$.

Lemma 7.5. If $m \geq 5$, then $D(m, v) \leq D(m - 1, v)$.

Now we find the smallest m_0 for each type and for each $v = 0, 1, 2, \ldots, R - 1$ such that $D(m_0, v) < E(m_0, v)$ using maple software. And the results are in the following lemma.

Lemma 7.6. $D(m_0, v) < E(m_0, v)$ for

(i) binary f.s.d. even code: if $m_0 = 21, 19, 18, 18$ while $v = 0, 1, 2, 3$, respectively,

(ii) Type II self-dual code: if $m_0 = 336, 332, 331$ while $v = 0, 1, 2$, respectively,

(iii) Type III self-dual code: if $m_0 = 157, 157, 158$ while $v = 0, 1, 2$, respectively,

(iv) Type IV self-dual code: if $m_0 = 48, 46, 46$ while $v = 0, 1, 2$, respectively,

(v) f.s.d.a. odd code over \mathbb{F}_4: if $m_0 = 13, 13$ while $v = 0, 1$, respectively.

And we calculate $\frac{\alpha_{m+2}}{\alpha_{m+1}} - E(m, v)$ using maple software. The results are in the following Lemma.

Lemma 7.7. $\frac{\alpha_{m+2}}{\alpha_{m+1}} - E(m, v) < 0$ for

(i) binary f.s.d. even code: if $m = 11 - 20, 12 - 18, 13 - 17, 14 - 17$ while $v = 0, 1, 2, 3$, respectively,

(ii) Type II self-dual code: if $m = 315 - 335, 320 - 331, 325 - 330$ while $v = 0, 1, 2$, respectively,

(iii) Type III self-dual code: if $m = 147 - 156, 150 - 156, 154 - 157$ while $v = 0, 1, 2$, respectively,

(iv) Type IV self-dual code: if $m = 38 - 47, 41 - 45, 43 - 45$ while $v = 0, 1, 2$, respectively,

(v) f.s.d.a. odd code over \mathbb{F}_4: if $m = 9 - 12, 10 - 12$ while $v = 0, 1$, respectively.

To complete the proof of Theorem 7.2, we need the following lemma, where the second case improves Theorem 5.1.

Lemma 7.8. (i) binary f.s.d. even code: There is no near-extremal code with $n = 72, 80$.

(ii) f.s.d.a. odd code over \mathbb{F}_4: There is no near-extremal code with $n = 16$.

Proof. For (i), the results comes from [8, Theorem 6]. Now we prove (ii). Let $m = 8$. By Theorem 4.3

$$-2^{m-1} \leq a_m \leq 2^{m-1}. \quad (32)$$

And from (29)

$$A_{m+1} \leq m(\alpha_m + 2^m - 1) - \alpha_{m+1} = -960 < 0. \quad (33)$$

23
This completes the proof of Theorem 7.2.

Remark 7.9. The coefficients of the possible weight enumerators for near-extremal f.s.d.a. odd codes over \mathbb{F}_4 with $n = 2i$ $(1 \leq i \leq 7)$ and all the possible values of $\alpha (= a_{n/2})$ in Theorem 4.3 are nonnegative integers.

Remark 7.10. We compare the idea of Zhang [20] with ours. In the first, the idea of Zhang is the following. Suppose there is an extremal self-dual code. Then one can choose a_i such that

$$W(1, y) = \sum_{k=0}^{m} a_k f^{j-R_k} g^k = 1 + \sum_{k=m+1}^{[n/w]} A_w k y^k,$$

where a_k $(0 \leq k \leq m)$ are uniquely determined. Then it follows that

$$A_w(m+2) < 0 \quad \text{if and only if} \quad n \geq n_0,$$

where n_0 is the smallest value in Theorem 1.6 in [20]. So the nonexistence of extremal self-dual codes follows. Now we explain our idea. Suppose there is a near-extremal (formally) self-dual code. Then we can choose a_i such that

$$W(1, y) = \sum_{k=0}^{m} a_k f^{j-R_k} g^k = 1 + \sum_{k=m+1}^{[n/w]} A_w k y^k,$$

where a_k $(0 \leq k \leq m-1)$ are uniquely determined but a_m is not. Since $A_w(m+2)$ depends on $a_m,$ we do not know the sign of $A_w(m+2).$ But if we assume that $A_w(m+1) \geq 0,$ we have

$$A_w(m+2) \leq -\alpha_{m+2} + \alpha_{m+1} E(m, v),$$

and

$$-\alpha_{m+2} + \alpha_{m+1} E(m, v) < 0 \quad \text{if and only if} \quad n \geq n_0,$$

where n_0 is the smallest value in Lemma (7.7). So the nonexistence of near-extremal self-dual codes follows. And we can add some more conditions in the cases of the binary f.s.d. even codes with $n = 8i$ $(i = 9, 10),$ and the f.s.d.a. odd codes over \mathbb{F}_4 with $n = 2i$ $(i = 8).$ These cases cannot be attacked by the above method. But in these cases, we have $|a_m| \leq 2^n/4-1,$ $|a_m| \leq 2^n/2-1$ respectively. Using these values, we can deduce $A_w(m+1) < 0.$ So the nonexistence of near-extremal binary f.s.d. even codes and f.s.d.a. odd codes over \mathbb{F}_4 follows.

References

