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TUMOR CONTROL, ELIMINATION, AND ESCAPE THROUGH A
COMPARTMENTAL MODEL OF DENDRITIC CELL THERAPY FOR
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Abstract. Melanoma, the deadliest form of skin cancer, is regularly treated by surgery in
conjunction with a targeted therapy or immunotherapy. Dendritic cell therapy is an immunotherapy
that capitalizes on the critical role dendritic cells play in shaping the immune response. We formulate
a mathematical model employing ordinary differential and delay differential equations to understand
the effectiveness of dendritic cell vaccines, accounting for cell trafficking with a blood and tumor
compartment. We reduce our model to a system of ordinary differential equations. Both models
are validated using experimental data from melanoma-induced mice. The simplicity of our reduced
model allows for mathematical analysis and admits rich dynamics observed in a clinical setting,
such as periodic solutions and bistability. We give thresholds for tumor elimination and existence.
Bistability, in which the model outcomes are sensitive to the initial conditions, emphasizes a need
for more aggressive treatment strategies, since the reproduction number below unity is no longer
sufficient for elimination. A sensitivity analysis exhibits the parameters most significantly impacting
the reproduction number, thereby suggesting the most efficacious treatments to use together with a
dendritic cell vaccine.

Key words. Hopf bifurcation, backward bifurcation, dendritic cell therapy, partial rank corre-
lation coefficient, stability analysis
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1. Introduction. Skin cancer is the most common cancer diagnosis in the
United States, with melanoma accounting for approximately 1\% of all skin cancer
[1]. Though a small percentage of the diagnoses, melanoma is the deadliest form of
skin cancer and thus causes the majority of skin cancer--related deaths. Over the past
30 years, rapid increases have been seen in the incidences of melanoma [1]. The rise
in melanoma has inspired additional research and advancements in its treatment.

Options for treatment consisted of excision, burning the tumor, amputation, and
extirpation in the mid-to-late 19th century [2]. Eventually chemotherapy was in-
troduced, though it did not result in improvements to the overall survival [3]. The
introduction of chemotherapy represented a greater shift towards treating the internal
cause of melanoma, as opposed to simply alleviating the associated pain. Treatment
for melanoma now generally involves surgery followed by adjuvant therapies, often
consisting of targeted therapy and immunotherapy. Targeted therapy uses drugs
to target proteins, genes, and molecules which promote cancer growth, while im-
munotherapy works to enhance the immune system response against cancer, either
through teaching it to react against something not previously considered foreign, like
cancer cells, or releasing it to attack known antigens, as in the case of immune check-
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point inhibitors [4]. Compared to previous routine therapies, immunotherapy has
shown great promise for melanoma patients [5].

Dendritic cells (DCs) originate in the bone marrow and are the most potent
antigen-presenting cells (APCs) with a singular ability to initiate naive T cells [6].
As such, DC therapy has been employed to take advantage of the role DCs play
in shaping the immune response. In this type of immunotherapy, immature DCs
are extracted from the patient, cultured ex vivo, and loaded with tumor-associated
antigens to become sensitized. Once sensitized and thereby activated, DCs are then
injected back into the patient, where they migrate to the lymphoid organs via the
bloodstream. Within the lymphoid organs, the activated (mature) DCs interact with
the naive cytotoxic T lymphocytes (CTLs), activating them and instructing them
to proliferate. These activated CTLs, otherwise known as effector cells, travel to
the tumor, where they mount a fight against cells expressing the tumor-associated
antigen. The cancer cells and the immunosuppressive environment of the tumor are
able to inactivate CTLs or induce CTL apoptosis, and the activated CTLs in turn kill
the tumor cells [7]. The immune system retains a memory response to these formerly
encountered antigens through the existence of memory CTLs, leading to the long-term
impacts of immunotherapies.

Human clinical trials involving DC-based vaccines commenced in the 1990s, yield-
ing positive results for patients with melanoma [8], prostate cancer [9], and B-cell
lymphoma [10]. Over 400 clinical trials evaluating DC vaccines are currently being
carried out in the United States, of which 237 are Phase II and 11 are Phase III [11].
Since the beginnings of DC-based vaccine-related clinical trials, a number of malig-
nancies have been tested with the immunotherapy, including intracranial tumors [12],
multiple myeloma [13], renal cell carcinoma [14], colorectal cancer [15], and cervical
cancer [16]. Furthermore, various treatment strategies, including prophylactic (pre-
exposure) dosing, have been studied. Prolonged survival and limited side effects have
been observed in patients with a vast array of tumor types treated with DC-based
vaccines [13]. Prophylactic dosing with DC-based vaccines, useful for patients with a
high risk of developing cancer, has been observed to effectively inhibit certain types of
cancers when studied in vivo [17]. However, the most effective use of the DC vaccine
has been shown with combination treatments. The low toxicity of the DC vaccine
greatly adds to its appeal as part of a combination therapy and, as such, DC vaccines
are often tested in conjunction with other treatments, such as chemotherapy, immune
checkpoint inhibitors, and radiotherapy [18]. Mathematical models allow for a deeper
look into the behavior of the vaccine and an exploration into what mechanisms lead
to treatment success or failure during these clinical trials, consequently motivating
and informing new clinical trials. Once a greater understanding of the monotherapy
is established, clear extensions would involve incorporating combination treatments
to better comprehend the synergy. Additional insights into these key mechanisms
decidedly prove valuable when designing combination therapies.

Immunotherapy treatments, particularly DC vaccines, have been a recent focus of
mathematical modeling efforts. Within the last 15 years, a number of researchers have
examined optimal DC treatment protocols by studying systems of ordinary differential
equations (ODEs) through the lens of various optimal control strategies [19, 20, 4, 21,
22]. Furthermore, ODEs have been employed recently in working towards the goal of
precision medicine. Gevertz and Wares [23] sought to find a simpler form of an ODE
model that would better allow for personalization of the parameters and individualized
fitting, while still maintaining the ability to describe the data and key biological
features for cancer treatment of DC injections and viruses engineered to infect and
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kill cancer cells. Additionally, models exploring DC therapy for melanoma have tested
differing dosing strategies using delay differential equations (DDEs) [24, 25, 26]. In
hopes of using in silico tests to reduce the economic burden of searching for and
experimenting with new protocols, Castillo-Montiel et al. [24] studied the question of
how to improve the efficacy of DC treatment through simulating various treatment
strategies and evaluating the sensitivity to changes in parameters.

In studying the effects of DC injections in mice, Ludewig et al. [26] developed a
delay differential compartment model representing DC and CTL trafficking. De Pillis,
Gallegos, and Radunskaya [25] proposed a modification and extension of Ludewig et
al.'s model, most notably by the addition of a tumor compartment. The de Pillis--
Gallegos--Radunskaya model of nine DDEs and ODEs consisted of DCs in the blood,
tumor, and spleen, activated CTLs in the blood, tumor, and spleen, memory CTLs
in the blood and spleen, and tumor cells. Murine melanoma data from Lee, Cho, and
Lee [27] was used in calibrating model parameters. Simulations of tumor growth were
validated against the data and then explored through various dosing strategies. They
concluded that even with the most aggressive dosing regimen, regardless of whether an
intratumoral or intravenous injection, DC treatment could not completely eradicate
the tumor after the tumor had already presented itself. However, if DC treatment
was administered before the tumor challenge, with the fractional tumor kill rate by
CTLs sufficiently large, the tumor was able to be eradicated. Due to the complexity
of the model, they were limited in their ability to do mathematical analysis.

DC therapy seeks to eradicate tumor cells by exciting a tailored immune response.
The de Pillis--Gallegos--Radunskaya model captures the dynamics of immune system
excitement in the spleen compartment and the dynamics of eradication in the tumor
compartment. The blood compartment captures transport between the other two. In
this article, the de Pillis--Gallegos--Radunskaya model is reduced in two stages. By
introducing delay, we collapse the blood and spleen into a single compartment, while
still accounting for the time it takes for DCs and activated CTLs to travel through
the body. The tumor compartment is retained. Thus, the dynamics of excitement
and eradication are still accounted for. By making several biological assumptions,
including quasi--steady state assumptions for certain cell populations and simplified
functional response for cell-cell interactions, the model is further reduced to a system
of four nonlinear ODEs. Since the utility of the model is for assessing treatment in a
short period of time, the assumptions can be deemed reasonable. Both the interme-
diate (including delay) and the reduced models are justified using clinical data from
melanoma-induced mice. The reduced model is simple enough to allow for mathemat-
ical analysis. That analysis reveals complicated dynamics, including bistability and
periodic solutions. In addition to describing the data, the reduced model captures
clinically observed phenomena, such as oscillatory tumor-immune behavior. Several
numerical experiments, particularly bifurcation diagrams, bistability tests for vari-
ous initial tumor sizes, examinations of eigenvalues as parameters change, limit cycle
simulations, partial rank correlation coefficient (PRCC) sensitivity analyses, and tu-
mor responses to various dosing strategies, are provided to verify the results of the
mathematical analysis and to test treatment strategies.

The article is organized as follows. A thorough description of the process of
model reduction is provided in section 2. The mathematical analysis of the reduced
model is provided in sections 3, 4, and 5. Sensitivity analysis and additional numerical
experiments are included in section 6. The main results are summarized and discussed
in section 7.
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2. Model formulation. Our model is based on de Pillis, Gallegos, and Radun-
skaya's model [25] with several main modifications. De Pillis, Gallegos, and Radun-
skaya's model captures the interactions between DCs, activated and memory CTLs,
and tumor cells in spleen, blood, and tumor compartments. DC therapy consists of
injecting activated DC cells intravenously or intratumorally. DCs then travel through
the blood to the spleen, where they stimulate the activation of CTLs, which in turn
travel through the blood back to the tumor to eradicate tumor cells. In the de Pillis--
Gallegos--Radunskaya model, the blood is a means of transport for dendritic cells and
effector cells between the spleen and the tumor. The primary focus of their work
involved examining optimal hypothetical DC treatments. From the perspective of the
tumor, the treatment has the net effect of changing the flow of DCs and active CTLs
into the tumor. Since we are chiefly interested in the effectiveness of the therapy, it
is reasonable to model some of the interactions away from the tumor compartment
implicitly, rather than explicitly. To that end, we introduce a delay to account for
the history of the DCs and CTLs as they travel through the blood to the spleen.
This allows us to model the activation of naive and memory CTLs in the blood, while
implicitly accounting for the fact that activation actually takes place in the spleen.
Our first reduced model (intermediate model) of six DDEs and ODEs captures the
movement between two compartments: the blood and the tumor. The model consists
of DCs in the blood (Db), DCs in the tumor (Dt), tumor cells (T ), memory CTLs in
the blood (Em

b ), activated CTLs in the blood (Ea
b ), and activated CTLs in the tumor

(Ea
t ), all of which are represented by the circles in Figure 1. We additionally incor-

porate the effect of competition for space within the tumor compartment by adding
negative feedback on the tumor cell growth from activated CTLs and DCs, as also
shown in Figure 1.

The other major change is the choice of functional response for the interactions
between CTLs and DCs. The de Pillis--Gallegos--Radunskaya model assumes naive
cells are activated at a constant rate when DCs are present. To reflect the biology of
the cell-cell interactions better, we instead allow Michaelis--Menten kinetics to govern
the interaction between naive CTLs and DCs. Finally, we assume a constant influx
of activated CTLs from the spleen to the blood. We refer to the resulting model as
the intermediate model. Figure 1 provides a diagram of the intermediate model.

The intermediate model is given by the following system:

dDb

dt
= vb(t)\underbrace{}  \underbrace{}  

injection

+ \mu TBDt\underbrace{}  \underbrace{}  
migration

 - \mu BTDb
T

KT + T\underbrace{}  \underbrace{}  
tumor recruitment

 - \delta DDb\underbrace{}  \underbrace{}  
death

,(2.1a)

dDt

dt
= vt(t)\underbrace{}  \underbrace{}  

injection

+Di
T

KT + T\underbrace{}  \underbrace{}  
activation

+\mu BTDb
T

KT + T\underbrace{}  \underbrace{}  
tumor recruitment

 - \mu TBDt\underbrace{}  \underbrace{}  
migration

 - \delta DDt\underbrace{}  \underbrace{}  
death

,(2.1b)

dEa
b

dt
= sEa\underbrace{}  \underbrace{}  

source

+ e - \delta Ea\tau Db(t - \tau )En

\theta n +Db(t - \tau )\underbrace{}  \underbrace{}  
activation/proliferation

+ bme
 - \delta Ea\tau Db(t - \tau )Em

b (t - \tau )

\theta m +Db(t - \tau )\underbrace{}  \underbrace{}  
activation/proliferation

 - ramE
a
b\underbrace{}  \underbrace{}  

becoming memory

 - \mu BTEE
a
b

T

KT + T\underbrace{}  \underbrace{}  
migration

 - \delta EaEa
b\underbrace{}  \underbrace{}  

death

,(2.1c)D
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𝑐𝑡
𝐸𝑡𝑎

𝐾𝐸𝑡
𝑎 + 𝐸𝑡𝑎

𝑇 

𝜇𝐵𝑇𝐸𝐸𝑏𝑎
𝑇

𝐾𝑇 + 𝑇
 

𝐷𝑖
𝑇

𝐾𝑇 + 𝑇
 

𝑒−𝛿𝐸𝑎𝜏
𝐷𝑏(𝑡 − 𝜏)𝐸𝑛
𝜃𝑛 + 𝐷𝑏(𝑡 − 𝜏)

 

𝑏𝑚𝑒−𝛿𝐸𝑎𝜏
𝐷𝑏(𝑡 − 𝜏)𝐸𝑏𝑚(𝑡 − 𝜏)
𝜃𝑚 + 𝐷𝑏(𝑡 − 𝜏)

 

𝜇𝐵𝑇𝐷𝑏
𝑇

𝐾𝑇 + 𝑇
 

𝑠𝐸𝑎 

𝐸𝑏𝑎 

𝛿𝐸𝑎𝐸𝑏𝑎 𝛿𝐸𝑚𝐸𝑏𝑚 

𝐸𝑏𝑚 

𝑠𝐸𝑚  

𝑇 

𝐷𝑏 

𝛿𝐷𝐷𝑏  

𝑣𝑏(𝑡) 

𝛿𝐷𝐷𝑡 
 

𝐷𝑡  

𝑣𝑡(𝑡) 

𝑟𝑎𝑚𝐸𝑏𝑎 

𝛿𝐸𝑎𝐸𝑡𝑎 

𝐸𝑡𝑎 

𝑐𝑒
𝐸𝑡𝑎

𝐾𝐸𝑡𝑎 + 𝐸𝑡𝑎
𝑇 

𝜇𝑇𝐵𝐷𝑡 

𝑟𝑇 (1 −
𝑇 + 𝐸𝑡𝑎 + 𝐷𝑡

𝑘
) 

𝐸𝑛 

𝐷𝑖  

Fig. 1. The interactions governing (2.1). Dashed lines represent a catalytic effect, flat-
headed arrows represent an inhibitory effect, and straight arrows connecting populations represent
movement between populations, whether through entering a new compartment or becoming acti-
vated/inactivated. The circles represent the variables of the system, while squares represent cell
populations per day assumed to be constant. Db, Dt, Em

b , Ea
b , E

a
t , T, En, and Di represent DCs in

the blood, DCs in the tumor, memory CTLs in the blood, activated CTLs in the blood, activated
CTLs in the tumor, tumor cells, the number of naive CTLs activated/proliferating per day, and the
number of immature DCs being activated per day. The \mu parameters represent maximum transfer
rates between compartments, \delta parameters reflect death of the cell populations, and s parameters
act as source terms. Intratumoral and intravenous DC injections are given by vt(t) and vb(t), re-
spectively. r, k, ct, ce, bm, and ram reflect the tumor cell growth rate, tumor cell carrying capacity,
maximum rate activated CTLs kill the tumor cells, maximum rate tumor cells inactivate CTLs,
maximum activation/proliferation rate of memory CTLs by DCs, and natural inactivation rate of
activated CTLs. All parameter values and descriptions are listed in Table SM1 in the supplementary
materials.

dEa
t

dt
= \mu BTEE

a
b

T

KT + T\underbrace{}  \underbrace{}  
migration

 - ce
Ea

t

KEa
t
+ Ea

t

T\underbrace{}  \underbrace{}  
inactivation by tumor

 - \delta EaEa
t\underbrace{}  \underbrace{}  

death

,(2.1d)

dEm
b

dt
= sEm\underbrace{}  \underbrace{}  

source

 - bme
 - \delta Ea\tau Db(t - \tau )Em

b (t - \tau )

\theta m +Db(t - \tau )\underbrace{}  \underbrace{}  
activation/proliferation

+ ramE
a
b\underbrace{}  \underbrace{}  

becoming memory

 - \delta EmEm
b\underbrace{}  \underbrace{}  

death

,(2.1e)

dT

dt
= rT

\biggl( 
1 - T + Ea

t +Dt

k

\biggr) 
\underbrace{}  \underbrace{}  

growth

 - ct
Ea

t

KEa
t
+ Ea

t

T\underbrace{}  \underbrace{}  
death by CTL

.(2.1f)

A description of the model parameters and their values for fitting, along with
the related sources from the literature, are given in Table SM1 in the supplementary
materials, linked from the main article webpage. The parameters unable to be found
in the literature were fixed using melanoma data from Lee, Cho, and Lee [27].

The behavior of the DCs moving between the blood and tumor compartments is
captured through (2.1a) and (2.1b), respectively. The functions vb(t) and vt(t) are
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source terms modeling intravenous and intratumoral DC injections. As functions of
time, these source terms allow for numerical testing of dosing strategies. DC transfer
from the blood to the tumor occurs at a maximum rate of \mu BT , with the population
of tumor cells catalyzing the movement. Once the DCs are sensitized and loaded with
tumor antigens, they leave the tumor to migrate towards the lymphoid organs via
the blood at a maximum rate of \mu TB to interact with the CTLs. A daily number of
immature DCs, Di, become sensitized and activated as they interact with the tumor
cells. Following standard practice as in [28], the model assumes Michaelis--Menten ki-
netics in all immune and tumor-immune interactions. The Michaelis--Menten kinetics
allow for a representation of saturated immune responses and can also capture the
effects of only portions of the tumor being able to interact with the immune cells at
a time.

The activated CTLs migrate between the blood and tumor compartments as given
by (2.1c) and (2.1d). The prolonged interaction between DCs and CTLs required for
activation and the time accounting for their travel from the lymphoid organs are
represented by a delay in interactions between memory and naive CTLs and DCs.
Through these interactions with the DCs, the naive and memory CTLs are instructed
to multiply at maximum rates bn and bm, respectively. Following an absence of
contact with the tumor-associated antigen, activated CTLs in the blood return to a
resting memory state at rate ram [29]. We assume a constant influx sEa of activated
CTLs from the spleen to the blood. The presence of the tumor helps to catalyze the
migration of the activated CTLs from the blood to the tumor at a maximum rate of
\mu BTE . Once in the tumor, the activated CTLs interact with the tumor, becoming
inactivated by the tumor cells at a rate of ce.

Equation (2.1e) governs the dynamics of the memory CTLs in the blood. We
assume a constant influx sEm of memory CTLs from the spleen to the blood. Addi-
tionally, the activation of memory CTLs acts as a loss, and inactivation of Ea

b acts as
a source term.

The first term of the right-hand side of (2.1f) accounts for tumor growth. In a
variety of models, tumor growth has been modeled with a logistic [25, 30], exponential
[31], power law [32], or Gompertzian [24, 33] approach. We assume competition
for space from the activated CTLs and DCs in the tumor compartment negatively
impacts the tumor growth. The activated CTLs kill the tumor cells at rate ct. By
using Michaelis--Menten kinetics to govern the killing of the tumor cells, we are able
to capture the effects of melanoma being a solid tumor, where immune cells can only
contact fractions of the tumor at a time.

To determine the validity of our biological assumptions and simplifications, we
compare our model to the de Pillis--Gallegos--Radunskaya model [25] using clinical
data given in Lee, Cho, and Lee [27]. The mouse experiments in Lee, Cho, and
Lee [27] examine the tumor volume with and without DC treatment. All mice were
injected with 5 \times 105 B16F10 cells to induce malignant melanomas. Intratumoral
doses ranging from 0 to 21\times 105 DCs were administered 6, 8, and 10 days following
the B16F10 cell inoculation. In computing tumor volume, we assume tumor cells are
spherical. We approximate the diameters to be 20 \mu m, in accordance with the mean
B16F10 cell diameter recorded in recent measurements [34].

From Figure 2a, we observe that our intermediate model can closely reproduce the
experimentally observed tumor reductions from various doses of DCs. While fitting
data does not necessarily validate mathematical models, the ability of our model to
describe clinical data does help justify incorporating our additional biological details
and simplifications. Additionally, we note that even though the intermediate model
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(a) Intermediate model (2.1)
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(b) de Pillis--Gallegos--Radunskaya model [25]

Fig. 2. The fit to the data from Lee, Cho, and Lee [27] with (a) the intermediate DDE and
ODE model (2.1) and (b) the de Pillis--Gallegos--Radunskaya model [25]. Mean relative errors for
the fits are given in Table 2.

is simpler than the de Pillis--Gallegos--Radunskaya model, it is comparable in terms
of fitting, as outlined in Table 2 and demonstrated in Figure 2.

Having formulated the intermediate model, we go on to make several simplify-
ing assumptions supported by biological observations. Through studying a variety of
species, including both mice [35] and humans [36, 37], the memory T cells have been
found to turn over faster than the naive T cells. We assume that this turnover is hap-
pening rapidly such that the memory CTLs are at a quasi--steady state. Additionally,
since the model is only intended to assess treatment for a short period of time, we can
reasonably assume the DC movement between the blood and tumor compartments
is independent of the tumor size during the brief period being considered. We sim-
plify the representation of cell-cell interactions by supposing mass action kinetics, as
opposed to Michaelis--Menten kinetics. We assume that the proportion of activated

CTLs in the tumor,
Ea

t

Ea
t +Ea

b
, is approximately constant. This constant ratio allows

us to combine (2.1c) and (2.1d) into a single equation for the effector cells, given by
(2.2c). These assumptions lead to further model reductions and the formulation of
the reduced model (2.2), which is analytically tractable.

Table 1
Variables of the simplified model (in cells).

Variable Description
Db DCs in the blood
Dt DCs in the tumor
E activated CTLs
T tumor cells

The variables of the simplified model, their meanings, and their units are listed in
Table 1. Parameter values are outlined in Table SM2 in the supplementary materials.
The simplified system takes the following form:

dDb

dt
= vb(t) - \mu BTDb + \mu TBDt  - \delta DDb,(2.2a)

D
ow

nl
oa

de
d 

05
/0

2/
20

 to
 1

29
.2

19
.2

47
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TUMOR DYNAMICS THROUGH DC THERAPY MODEL 913

dDt

dt
= vt(t) +DiT + \mu BTDb  - \mu TBDt  - \delta DDt,(2.2b)

dE

dt
= sE + cDb  - ceET  - (ram + \delta E)E,(2.2c)

dT

dt
= rT

\biggl( 
1 - T + E +Dt

k

\biggr) 
 - ctET.(2.2d)

The assumptions that lead to the reduced model are further justified by a fit to
clinical data, as displayed in Figure 3.

0 5 10 15 20
0

500

1000

1500

2000

2500
Tumor Volume

0

1e5

7e5

21e5

Fig. 3. The fit to the data from Lee, Cho, and Lee [27] with the simplified ODE model (2.2).
The mean relative error for the fit is given in Table 2.

Despite the reductions made, the model remains able to describe the data from
all four trials with a single set of fixed, biologically reasonable parameters. As the
simplified model is comparable in terms of fitting to both the de Pillis--Gallegos--
Radunskaya model and the intermediate model, as outlined in Table 2 and Figures 2
and 3, it is worth mathematically studying to extract insights, since the complexity
of the other models allows for far less analysis.

Table 2
Mean relative errors for various model formulations.

Model Mean relative error

System (2.1): intermediate model
(DDE and ODE)

0.204766

System (2.2): simplified model (ODE) 0.230647
de Pillis--Gallegos--Radunskaya model
[25]

0.291335

3. Preliminary analysis. The analysis that follows is based on the reduced
model given by system (2.2). In this section, we establish basic results of the model,
like well-posedness, dissipativity, and the existence of equilibria. In addition, we
determine the basic reproduction number \scrR 0. Unless otherwise stated, we assume
that all of the parameters of (2.2) are positive.

Proposition 3.1. Suppose that vb(t) and vt(t) are smooth, bounded functions of
t. Then system (2.2) is well-posed and point dissipative.
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914 LAUREN R. DICKMAN, EVAN MILLIKEN, AND YANG KUANG

Proof. Let x = (Db, Dt, E, T ), and let \phi t be the flow of (2.2). Writing (2.2) as
the vector equation x = f(t, x), since vb(t) and vt(t) are smooth, we have that f
is continuously differentiable and x = f(t, x) is well-posed. By examining the flow
on the boundary, we see that for i = 1, 2, 3, if xi = 0, then (\phi t(x))i > 0 for t > 0.
The subspace \{ x \in \BbbR 4| T = 0\} is fully invariant. By the previous arguments, the
restriction of this fully invariant to its intersection with the nonnegative orthant is
forward invariant. By Gr\"onwall's inequality, if x4 > 0, then (\phi t(x))4 > 0.

It follows that \.T \leq rT (1 - T
k ). Given T (0) \geq 0, given \varepsilon > 0, there exists t0 such

that T (t) < k + \varepsilon for all t > t0. Since vb and vt are bounded, there exist positive
constants C1 and C2 such that if D = Db + Dt, then \.D < A  - BD for t > t0. It
follows that given \varepsilon > 0, there exists t1 > t0 such that D(t) = Db(t)+Dt(t) <

C1

C2
+ \varepsilon 

for all t > t1. Taken together, there exist positive constants C3 and C4 such that
\.E < C3  - C4E for t > t1. Given \varepsilon > 0, there exists t2 > t1 such that E(t) < C3

C4
+ \varepsilon 

for all t > t2. Fix \varepsilon > 0, and let C5 = max(k, C1

C2
, C3

C4
)+ \varepsilon . For any nonnegative initial

condition x, there exists t2 > 0 such that \phi t+t2(x) \in [0, C5]
4 for all t > 0. Thus,

system (2.2) is point dissipative.

For the purpose of simplifying the mathematical analysis, we make the assumption
that vb(t) = vb and vt(t) = vt are constant and nonnegative. The next result is the
existence and uniqueness of a tumor-free equilibrium.

Proposition 3.2. System (2.2) admits the unique tumor-free equilibrium E0 =
(Db\ast , Dt\ast , E\ast , 0).

Proof. Suppose T = 0; then \.T = 0, and (2.2a) and (2.2b) decouple from (2.2) to
form the planar cooperative system

(3.1)
\.Db = vb  - \delta DDb  - \mu BTDb + \mu TBDt,

\.Dt = vt  - \delta DDt + \mu BTDb  - \mu TBDt,

which admits the unique equilibrium (Db\ast , Dt\ast ) given by

Db\ast =
\mu TBvt + (\delta D + \mu TB)vb
\delta D(\delta D + \mu BT + \mu TB)

, Dt\ast =
(\delta D + \mu BT )vt + \mu BT vb
\delta D(\delta D + \mu BT + \mu TB)

.

Substituting T = 0 and Db = Db\ast into (2.2c) yields

E\ast =
se + cDb\ast 

\sim 
\delta E

.

The treatment we are considering involves tailoring the immune system to launch
an enhanced response targeting tumor cells. From the perspective of the immune
system in this context, tumor cells can be viewed as similar to an infectious disease.
We borrow the notion of the basic reproduction number from the study of infectious
disease dynamics. The basic reproduction number, denoted by \scrR 0, is defined as the
average number of secondary infections generated by a single infectious individual in
a totally susceptible population during the lifetime of the infectious individual. In
the present context, the basic reproduction number can be viewed as a ratio of the
proliferation potential of a tumor cell to the strength of a combination of the immune
response and crowding effects. The basic reproduction number can be calculated using
the next generation matrix approach [38, 39].
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Proposition 3.3. The basic reproduction number \scrR 0 is given by

(3.2) \scrR 0 =
k\bigl( 

1 + kct
r

\bigr) 
E\ast +Dt\ast 

.

Proof. Note that \.T = \scrF (Db, Dt, E, T ) - \scrV (Db, Dt, E, T ), where \scrF represents the
new infections (tumor cells) and \scrV represents the rate of tumor cells leaving the
system. We can then decouple (2.2d) from the rest of (2.2) when close to the disease-
free equilibrium, E0. Thus,

dT
dt = (F  - V )T . We then have

F =

\biggl( 
\partial \scrF 
\partial T

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
E0

= r, V =

\biggl( 
\partial \scrV 
\partial T

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
E0

=
r

k
(E\ast +Dt\ast ) + ctE\ast .

Now the next generation operator FV  - 1 = k

(1+ kct
r )E\ast +Dt\ast 

. Therefore,

(3.3) \scrR 0 =
k\bigl( 

1 + kct
r

\bigr) 
E\ast +Dt\ast 

,

where E\ast and Dt\ast correspond to the steady states of the activated CTLs and DCs in
the tumor when the system is tumor-free.

Remark 3.4. Suppose that r is the dominant eigenvalue of the Jacobian of (2.2)
evaluated at E0. Then r and \scrR 0  - 1 have the same sign. In models of infectious
disease dynamics, it is common that the disease-free equilibrium undergoes a trans-
critical bifurcation as \scrR 0 increases through the critical value \scrR 0 = 1 resulting in the
emergence of a unique positive equilibrium. However, system (2.2) produces more
complicated dynamics. While it is indeed the case that (2.2) admits a unique positive
equilibrium when \scrR 0 > 1, it may admit two positive equilibria when \scrR 0 < 1. We
will see that the existence of these two positive equilibria is the result of a backward
bifurcation in section 4.

Proposition 3.5. If \scrR 0 \geq 1, then there exists a unique positive equilibrium, E1.
For k sufficiently large, there exist constants C6 and \scrR crit such that if ce > C6 and
\scrR crit < \scrR 0 < 1, then in addition to E1, there exists an additional positive equilibrium,
E2.

Proof. Suppose T \ast > 0. From (2.2a),

(3.4) D\ast 
b =

\mu TB

\delta D + \mu BT
D\ast 

t +
vb

\delta D + \mu BT
.

From \.Dt = 0, we have

(3.5) D\ast 
t =

Di(\delta D + \mu BT )

\delta D(\delta D + \mu BT + \mu TB)
T \ast +

vt(\delta D + \mu BT ) + vb\mu BT

\delta D(\delta D + \mu BT + \mu TB)
= c4T

\ast +Dt\ast .

Combining (3.4) and (3.5) yields

(3.6) D\ast 
b =

Di\mu TB

\delta D(\delta D + \mu BT + \mu TB)
T \ast +

vt\mu TB + vb(\delta D + \mu TB)

\delta D(\delta D + \mu BT + \mu TB)
= c3T

\ast +Db\ast .

From \.T = 0, T \ast = 0 or

(3.7) E\ast =  - (1 + c4)

1 + kct
r

T \ast +
k  - Dt\ast 

1 + kct
r

.
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916 LAUREN R. DICKMAN, EVAN MILLIKEN, AND YANG KUANG

Recall that for T (0) > 0, after finite time we have 0 < T < k+\varepsilon . Therefore, ( \.Db, \.Dt)
T

is greater than the monotone planar system (3.1). It follows that D\ast 
b > Db\ast  - \varepsilon in

finite time. Therefore, after finite time, \.E > sE + cDb\ast  - (
\sim 
\delta E + k)E. Thus, we must

have that E\ast > 0.
Substituting (3.6) and (3.7) into \.E = 0 yields g(T ) = \scrA 0T

2 + \scrA 1T + \scrA 2 = 0,
where

\scrA 0 =
ce(1 + c4)

1 + kct
r

,(3.8a)

\scrA 1 = cc3 +

\sim 
\delta E(1 + c4)

1 + kct
r

 - ce(k  - Dt\ast )

1 + kct
r

,(3.8b)

\scrA 2 =

\sim 
\delta E

1 + kct
r

\Biggl[ \biggl( 
1 +

kct
r

\biggr) 
sE + cDb\ast 

\sim 
\delta E

+Dt\ast  - k

\Biggr] 
.(3.8c)

Note that sgn(\scrA 2) = sgn(1  - \scrR 0). If \scrR 0 > 1, then \scrA 2 < 0 and g(T ) is a
concave up parabola with g(0) < 0. Therefore, there exists a unique positive so-
lution, T \ast 

1 , of g(T ) = 0 when \scrR 0 > 1. In light of (3.6), (3.5), and (3.7), E1 =
(D\ast 

b (T
\ast 
1 ), D

\ast 
t (T1), E

\ast (T \ast 
1 ), T

\ast 
1 ) is the unique positive equilibrium of (2.2) when\scrR 0 > 1.

Now, \scrR 0 is monotonically decreasing in sE with limsE\rightarrow \infty \scrR 0 = 0. Rewriting

\scrA 2 = sE + cDb\ast  - 
\sim 
\delta E

k - Dt\ast 
1+

kct
r

, it is clear that limsE\rightarrow \infty \scrA 2 = +\infty . Suppose that

initially \scrR 0 > 1, as in the previous case. We increase sE until \scrR 0 = 1. Then \scrA 2 = 0
and g(T \ast ) has two real roots, T \ast = 0 and T \ast =  - \scrA 1

\scrA 0
. If

(3.9) ce > C6 =
1 + kct

r

k  - Dt\ast 

\Biggl( 
\sim 
\delta E

1 + c4

1 + kct
r

+ cc3

\Biggr) 
,

then \scrA 1 < 0 and T \ast =  - \scrA 1

\scrA 0
> 0. By continuity, there exists \delta > 0 such that g(T \ast ) has

two real distinct positive roots for 1  - \delta < \scrR 0 < 1. Now consider the discriminant,
D = \scrA 2

1  - 4\scrA 0\scrA 2, of g. If \scrR 0 = 1, then D = \scrA 2
1 > 0. Since \scrA 2 monotonically

increases from zero as we decrease \scrR 0 (say by increasing sE), there exists a unique

s1 such that if sE = s1, then \scrA 2 =
\scrA 2

1

4\scrA 0
, which implies that D = 0. Let

(3.10) \scrR crit =
k

(1 + kct
r ) s1+cDb\ast 

\sim 
\delta E

+Dt\ast 
.

It follows that if ce > C6, then g(T \ast ) has two positive roots T \ast 
1 > T \ast 

2 for \scrR crit <
\scrR 0 < 1. Setting Ei = (D\ast 

b (T
\ast 
i ), D

\ast 
t (Ti), E

\ast (T \ast 
i ), T

\ast 
i ) for i = 1, 2, the result follows.

The next two results are related to the stability of the tumor-free equilibrium,
E0. It was noted in the proof of Proposition 3.1 that the subspace \{ (Db, Dt, E, T ) \in 
\BbbR 4| T = 0\} is fully invariant. Let X2 be the intersection of this fully invariant subspace
with the nonnegative orthant. From examination of the flow on the boundary, it
follows that X2 is forward invariant. The following result deals with the stability
of the tumor-free equilibria in X2. At first glance, this result may appear to lack
biological relevance. However, it is critical ground work for later results regarding the
existence or eradication of the tumor.

Proposition 3.6. The tumor-free equilibrium is globally asymptotically stable
(G.A.S.) in the forward invariant boundary subspace X2.
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Proof. As noted in the proof of Proposition 3.2, when T = 0, (2.2a) and (2.2b)
decouple from system (2.2) to form the monotone planar system (3.1) which admits
the equilibrium (Db\ast , Dt\ast ). Let D = Db +Dt. Then \.D = \.Db + \.Dt = v  - \delta DD, where
v = vb + vt. Thus, for any D(0) \geq 0,

lim
t\rightarrow \infty 

D(t) = lim
t\rightarrow \infty 

Db(t) +Dt(t) =
v

\delta D
.

It follows from application of Theorem 2.2 of Smith [40] that solutions of (3.1) with
nonnegative initial conditions converge to (Db\ast , Dt\ast ). Therefore, for any \epsilon > 0, solu-
tions of (3.1) with nonnegative initial conditions enter \{ (Db, Dt) : | Db  - Db\ast | < \epsilon \} in
finite time.

The remaining equation describing the flow in X2 is given by

\.E = sE + cDb  - 
\sim 
\delta EE,

where
\sim 
\delta E = ram + \delta E . For any \epsilon > 0, for any initial data in X2, after finite time,

sE + c(Db\ast  - \epsilon ) - 
\sim 
\delta EE < \.E < sE + c(Db\ast + \epsilon ) - 

\sim 
\delta EE.

The result follows by the comparison principle.

Next, we consider the stability of E0 in the full space \=\BbbR 4
+. At this stage, we are

limited to local stability analysis.

Proposition 3.7. E0 = (Db\ast , Dt\ast , E\ast , 0) is locally asymptotically stable when
\scrR 0 < 1 and unstable when \scrR 0 > 1.

Proof. The Jacobian of system (2.2) evaluated at the tumor-free equilibrium E0

is given by

(3.11) J| E0
=

\left(     
 - \mu BT  - \delta D \mu TB 0 0

\mu BT  - \mu TB  - \delta D 0 Di

c 0  - 
\sim 
\delta E  - ceE\ast 

0 0 0 r
\Bigl( 
1 - 1

\scrR 0

\Bigr) 
\right)     ,

which admits eigenvalues

\lambda 1 = r

\biggl( 
1 - 1

\scrR 0

\biggr) 
;\lambda 2 =  - 

\sim 
\delta E ;\lambda 3 =  - \delta D;\lambda 4 =  - (\delta D + \mu TB + \mu BT ).

Thus, E0 is locally asymptotically stable when \scrR 0 < 1, and E0 is unstable when
\scrR 0 > 1.

4. Backward bifurcation and bistability. In this section, we return attention
to the possibility of the existence of two positive equilibria described in Proposition
3.5. In Remark 3.4, we allude to the fact that, in epidemiological models, it is typical
for a disease-free equilibrium to undergo a transcritical bifurcation with a unique pos-
itive equilibrium as \scrR 0 increases through the critical value of 1. Another possibility
is that of a backward bifurcation. Backward bifurcations in epidemiological models
have been associated with modeling assumptions that lead to loops among infected
and susceptible classes as a result of reinfection or waning immunity, for example.
Our next result is a proof of the existence of a backward bifurcation in system (2.2),
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via analysis of the center manifold and Theorem 4.1 of [41]. Interestingly, this back-
ward bifurcation relies on the rate that activated CTLs are inactivated as a result of
interacting with tumor cells. One feature of backward bifurcations in epidemiologi-
cal models is that they can generally be eliminated by assuming mass action, rather
than frequency-dependent functional response. Similar to a tuberculosis model out-
lined in [42], it is possible to exhibit backward bifurcation in models with mass action
functional response, and system (2.2) is an example of that.

Rearranging (3.3), it follows that

sgn(\scrR 0  - 1) = sgn

\biggl( 
k  - E\ast +Dt\ast 

1 - ct
r E\ast 

\biggr) 
.

It is always possible to make 1 - ct
r E\ast > 0, by making ct sufficiently small. That is, if

(4.1) ct < C7 =
r

E\ast 
,

then there exists unique k\ast > 0 such that k = k\ast implies that \scrR 0 = 1.

Theorem 4.1. If \scrR 0 = 1 and ct < C7, then there exists C8 > 0 such that system
(2.2) undergoes a backward bifurcation at E0 as ce increases through C8.

Proof. We first recall that the Jacobian, J , of (2.2) evaluated at the disease-free
equilibrium, E0, is given by (3.11), where j44 = r

\bigl( 
1 - 1

\scrR 0

\bigr) 
is the only nonzero entry

in the fourth row. Since ct < C7, there exists !k\ast > 0 such that k = k\ast implies
\scrR 0 = 1. Setting k = k\ast , we have that zero is a simple eigenvalue of J , and all
other eigenvalues have negative real part. Hence, we apply center manifold theory to
analyze the dynamics near k = k\ast . The right eigenvector of J associated with the
eigenvalue 0 is given by

w =

\Biggl[ 
c3, c4,

cc3  - ceE\ast 
\sim 
\delta E

, 1

\Biggr] T
,

where c3 and c4 are given in (3.6) and (3.5), respectively. The left eigenvector asso-
ciated with the eigenvalue 0 is given by

v = [0, 0, 0, 1].

Rewrite (2.2) as \.x = f(x, \psi ), where x and f(x, \psi ) are vectors in \BbbR 4 and \psi = k.
Following Castillo-Chavez and Song [41], we compute the following sums:

a =

n\sum 
k,i,j=1

vkwiwj
\partial 2fk
\partial xi\partial xj

(E0, k
\ast ), b =

n\sum 
k,i=1

vkwi
\partial 2fk
\partial xi\partial \psi 

(E0, k
\ast ).

Since v = [0, 0, 0, 1], we need only consider the partial derivatives of f4(x). Direct
calculation reveals that

a =  - 2
r

k
(c4 + 1) - 2

\Bigl( r
k
+ ct

\Bigr) \Biggl( cc3  - ceE\ast 
\sim 
\delta E

\Biggr) 
,

b =
r(E\ast +Dt\ast )

k2
.
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Then b is always positive and a > 0 if and only if

(4.2) ce > C8 =
1

E\ast 

\Biggl( 
\sim 
\delta E

\Biggl( 
1 + c4

1 + ctk
r

\Biggr) 
+ cc3

\Biggr) 
.

The statement follows from application of Theorem 4.1 in Castillo-Chavez and Song
[41].

This backward bifurcation consists of two codimension-one bifurcations, a saddle
node bifurcation together with a transcritical bifurcation. By tuning the vertex of
the degree 2 polynomial for T \ast , we can reduce the region of bistability associated
with the backward bifurcation and even eliminate it by making the saddle node and
transcritical bifurcation points coincide. In this case, we have a pitchfork-like bifur-
cation. We may further perturb the vertex into the infeasible region, T \ast < 0, where
bistability exists in a mathematical sense but has no biological meaning. The critical
value where the two bifurcation points collide and result in a pitchfork-like bifurcation
corresponds to making \scrA 1 = 0. From (3.8b), \scrA 1 = 0 if and only if

cc3 +

\sim 
\delta E(1 + c4)

1 + kct
r

 - ce(k  - Dt\ast )

1 + kct
r

= 0,

which, when \scrR 0 = 1, is equivalent to

cc3 +

\sim 
\delta E(1 + c4)

1 + kct
r

 - ceE\ast = 0 \Leftarrow \Rightarrow a = 0.

Figure 4 illustrates the cases where a > 0, a = 0, and a < 0.
The stability of the various branches of equilibria is determined by Theorem 4.1

in [41]. Since

k  - Dt\ast 

1 + kct
r

=

\bigl( \bigl( 
1 + kct

r

\bigr) 
E\ast +Dt\ast 

\bigr) 
\scrR 0  - Dt\ast 

1 + kct
r

,

we may view C6 as a decreasing function of \scrR 0 with C6| \scrR 0=1 = C8 and C6 > C8

when \scrR 0 < 1. Then \scrR 0 = \scrR crit corresponds to the saddle node bifurcation point and
\scrR 0 = 1 corresponds to the transcritical bifurcation point. Together this results in the
following corollary. Figure 5 illustrates the bistability indicated in the corollary.

Corollary 4.2. Suppose the assumptions of Theorem 4.1 hold. Then system
(2.2) exhibits bistability for \scrR crit < \scrR 0 < 1.

The next result describes the conditions for the global stability of the tumor-free
equilibrium. We only consider the case in which the system exhibits a backward
bifurcation and a pair of positive equilibria for \scrR crit < \scrR 0 < 1.

Theorem 4.3. Suppose that the conditions of Theorem 4.1 hold. Then there
exists C9 > 0 such that if \scrR 0 < C9, then the tumor-free equilibrium is G.A.S.

Proof. By hypothesis, Corollary 4.2 implies that system (2.2) admits two distinct
positive equilibria for \scrR crit < \scrR 0 < 1. By construction, the choice of s1 used to
formulate \scrR crit in (3.10) guarantees that when \scrR 0 = \scrR crit, the discriminant D =
\scrA 2

1  - 4\scrA 0\scrA 2 = 0. Thus, if \scrR 0 < \scrR crit, or equivalently sE > s1, then E0 is the only
equilibrium of (2.2). We will proceed using comparison arguments. To that end, it is
necessary to assume that

(4.3) sE > s2 =

\biggl( 
\sim 
\delta E + cek

\biggr) 
k  - Dt\ast 

1 + kct
r

 - cDb\ast .
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Fig. 4. Backward bifurcation (a), pitchfork-like bifurcation (b), and transcritical bifurcation
(c) of the tumor-free equilibrium E0, with H: Hopf bifurcation, SN: saddle-node bifurcation, TC:
transcritical bifurcation, and P: pitchfork-like bifurcation. The blue lines represent stable equilibria,
while the red lines represent unstable equilibria.
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Fig. 5. Bistability exhibited as initial tumor burden increases with a fixed vb = 6.2\times 103. We
take vt = 0, \mu BT = 9.826\times 10 - 9, \mu TB = 0.0011, \delta D = 0.34, Di = 0.001, sE = 0.1, c = 3.205, ce =
10 - 4, ram = 0.01, \delta E = 0.1155, r = 0.3994, k = 109, ct = 3.5\times 10 - 6, satisfying the condition (4.2)
needed for a backward bifurcation.
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Let s\ast E = max(s1, s2):

(4.4) C9 =
k

(1 + kct
r )

s\ast E+cDb\ast 
\sim 
\delta E

+Dt\ast 
.

Now consider the flow of (2.2) when T (0) > 0. From (2.2d), \.T < rT
\bigl( 
1 - T

k

\bigr) 
.

Therefore, for any \varepsilon > 0, there exists t0 > 0 such that T (t) < k + \varepsilon for all t > t0.
Similarly, (2.2a) and (2.2b) are greater than or equal to the planar system (3.1) so
that for any \varepsilon > 0, there exists t1 > t0 such that Db(t) > Db\ast  - \varepsilon and Dt(t) > Dt\ast  - \varepsilon 
for all t > t1. It follows that, for any \varepsilon > 0, for t > t1,

\.E > sE + c(Db\ast  - \varepsilon ) - E(
\sim 
\delta E + ce(k + \varepsilon )).

For \varepsilon > 0, the equilibrium of the linear equation on the right-hand side of the inequal-
ity is

se + c(Db\ast  - \varepsilon )
\sim 
\delta E + ce(k + \varepsilon )

.

Thus, for \varepsilon > 0, there exists t2 > t1 such that

E(t) >
sE + cDb\ast 
\sim 
\delta E + cek

 - \varepsilon 

for all t > t2.

Since \scrR 0 < C9, we have sE > s\ast E and
(1+

kct
r )

sE+cDb\ast 
\sim 
\delta E+cek

+Dt\ast 

k > 1. Fix

\varepsilon 1 =
1

2

\left[  (1 + kct
r ) sE+cDb\ast 

\sim 
\delta E+cek

+Dt\ast 

2 + kct
r

 - k

2 + kct
r

\right]  .
Then, for t > t2,

\.T < rT

\left(    1 - 
T + (1 + kct

r )

\biggl[ 
sE+cDb\ast 
\sim 
\delta E+cek

 - \varepsilon 1

\biggr] 
+Dt\ast  - \varepsilon 1

k

\right)    < 0.

For t > t2, T (t) is decreasing and bounded below. Thus, limt\rightarrow \infty T (t) = \alpha < \infty .
By Barbalat's lemma, limt\rightarrow \infty \.T = 0. Since sE > s\ast E \geq s1, the only possibility is
\alpha = 0. The omega limit set of the initial point x0 with T (0) > 0 contains a point
in the forward invariant boundary set, X2, described in the comments preceding
Proposition 3.6. By Proposition 3.6, the omega limit set of any point in X2 is the
singleton \{ E0\} , so \{ E0\} \subset \omega (x0). If \omega (x0) contains a point other than E0, then it
would have to have T > 0, since E0 is G.A.S in X2. However, this is a contradiction
of the fact that limt\rightarrow \infty T (t) = 0. Thus, \omega (x0) = \{ E0\} .

Remark 4.4. By the definition of s\ast E , we have C9 \leq \scrR crit, with equality when
s1 \geq s2. Conditions for the positivity of (s1 - s2) have proven elusive. The difficulty is
in the requirement that ce > C6, since C6 depends on all of the remaining parameters,
either directly or through dependence on c3 and c4. In the case that s1 < s2, we
have C9 < \scrR crit, suggesting that perhaps \scrR crit is not a sharp threshold. However,
numerical experiments suggest the stability of E0 for \scrR 0 < \scrR crit even when s1 < s2.
It remains an open question as to how to close the gap between C9 and \scrR crit in the
case that s1 < s2.
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It has been found clinically that response rates for DC vaccines are two to three
times higher in the adjuvant setting when compared to the metastatic setting [43].
In an adjuvant setting, the tumor burden is already lessened by previous treatments.
Additionally, it has been observed that DCs are insufficient as a monotherapy in
treating advanced melanoma, yielding < 10\% improvements in objective response
rates. This behavior corresponds qualitatively to what might be expected in the
bistable region described above.

5. Hopf bifurcation and periodic solutions. In addition to a backward bi-
furcation, numerical experiments indicate the existence of Hopf bifurcations leading
to periodic solutions to system (2.2). First, fix our choice of parameters. If we view
\scrR 0 as a function of r, then it is an increasing function of r, since

d

dr
\scrR 0(r) =

k2ctE\ast 

((r + kct)E\ast +Dt\ast )2
> 0.

Next, we numerically compute the eigenvalues of the Jacobian evaluated at E1. We do
this as we vary r from 0.005 to 7 by increments of 1\times 10 - 3. Plotting the eigenvalues
in the complex plane, we see that a complex conjugate pair crosses from the left half-
plane to the right half-plane at approximately r = 0.233. This indicates a supercritical
Hopf, which we can detect via numerical integration of (2.2). The same conjugate
pair of eigenvalues cross back at approximately r = 6.806. Thus, the periodic orbit
either disappears, or there is a second subcritical Hopf. The plot of the eigenvalues
as we vary r is presented in Figure 6. An analytical proof of the Hopf bifurcation
remains an open question.

-0.8 -0.6 -0.4 -0.2 0.0

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

Eigenvalues as r ranges from 0.005 to 7

Re(λ)

Im
(λ
)

r

7

5.25

3.5

1.75

0

Fig. 6. Eigenvalues of the Jacobian of (2.2) evaluated at E1 as r varies from 0.005 to 7 in
increments of 0.001 with vb = 0, vt = 0, \mu BT = 1.272 \times 10 - 5, \mu TB = 0.0011, \delta D = 0.34, Di =

0.00126, sE = 0.01189, c = 0.127, ce = 9.42\times 10 - 14,
\sim 
\delta E = 0.1255, k = 109, ct = 0.0035.

Remark 5.1 (Bogdanov--Takens bifurcation). Recall the pitchfork-like bifurca-
tion illustrated in Figure 4. The bifurcation on the branch equilibria with T < 0 is
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Fig. 7. Projection of limit cycle in \BbbR 3 when vb = 0, vt = 0, \mu BT = 9.826 \times 10 - 9, \mu TB =
0.0011, \delta D = 0.34, Di = 0.001, sE = 5 \times 103, c = 3.205, ce = 9.42 \times 10 - 14, ram = 0.01, \delta E =
0.1155, r = 0.9, k = 5\times 1012, 3.5\times 10 - 6. Simulations run for t = 2000 days.

a Hopf bifurcation. The close proximity of a pitchfork-like bifurcation and Hopf bi-
furcation in the parameter space suggests the possibility of a Bogdanov--Takens (BT)
bifurcation. Since we insist that all parameters other than vb and vt are strictly pos-
itive, the Jacobian evaluated at E0, given in (3.11), can have at most a single zero

eigenvalue. However, if we let
\sim 
\delta E = 0, J admits a double zero eigenvalue. In the

case of a BT, the magnitude of periodic orbits around equilibria on the positive and
negative branches increases until the birth of homoclinic connections from the equi-
librium at T = 0. Then a periodic orbit appears which contains all three equilibria
in its interior (in normal form with interior in the sense of a Jordan curve; cf. [44,
p. 329]). However, in our system, the equilibrium with T = 0 is in the fully invari-
ant set \{ (Db, Dt, E, T ) \in \BbbR 4| T = 0\} . Therefore, once homoclinic orbits appear, they
persist even as the magnitude of oscillations continues to increase. Some numerical
experiments, as in Figure 7, suggest the presence of a homoclinic connection from E0

to itself as the magnitude of oscillatory solutions increases. In order to study the BT,

we must consider the limit as
\sim 
\delta E \rightarrow 0. However, lim\sim 

\delta E\rightarrow 0
E\ast = \infty . It may be possible

to make a change of variables ( 1
E\ast 

\rightarrow 0 as
\sim 
\delta E \rightarrow 0). A full analysis of a possible BT

bifurcation is beyond the scope of this article.

6. Numerical analysis.

6.1. Sensitivity analysis. To better understand the main drivers of \scrR 0 and its
sensitivity to parameter uncertainties, as it is a critical value in determining tumor
eradication or escape, we utilize the PRCC method, where 1,000,000 Latin hypercube
samples (LHSs) are taken for each parameter distribution. As there is uncertainty
in parameter estimates, we assume a uniform distribution for all the ranges given in
Table SM2 in the supplementary materials. For the parameters without ranges, we
consider uniform distributions for ranges around 10 - 3 to 103 times the fixed values. In
Figure 8a, we employ uniform sampling for all parameters. To avoid undersampling in
intervals where the parameter values are very small, we use a log-uniform distribution,
thus sampling on a logarithmic scale when the max/min > 103, with results shown in
Figure 8b.
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(a) Uniform sampling of parameter distributions
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(b) Log-uniform sampling of parameter distributions (log scale if max/min > 103)

Fig. 8. Sensitivity analysis is conducted using the PRCC method, where 1,000,000 LHSs
are taken for each (a) uniform and (b) log-uniform parameter distribution. Combining results,
ram, vb, ct, c, and vt are significant, where ram is positively correlated with \scrR 0.

The PRCC method reflects the correlation between \scrR 0 and parameters. PRCC
values range from --1 to 1, where --1 indicates that the parameter is highly negatively
correlated with \scrR 0, and 1 signifies that the parameter is highly positively correlated
with \scrR 0. Figure 8a gives the principal parameters influencing \scrR 0 to be vb, ram, ct,
and c. The natural inactivation rate of CTLs (ram) has the most significant positive
effect on \scrR 0, while the intravenous dose amount (vb), the kill rate of tumor cells by
activated CTLs (ct), and the activation/proliferation rate of CTLs (c) are similarly
negatively correlated. The different methods of sampling lead to different results,
as Figure 8b shows ct, vt, and vb to be most significant, thus losing ram and c and
gaining vt, the intratumoral dose amount. Combining results, ram, vb, ct, c, and vt
are significant, where ram is positively correlated with \scrR 0, and vb, ct, c, and vt are
negatively correlated.

Thus, for \scrR 0 to be low enough such that the tumor-free equilibrium is the only
stable equilibrium, a high DC dosage amount, whether intravenous vb or intratumoral
vt, or treatments targeting a decrease in ram or an increase in ct or c, would be most
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effective. In particular, this suggests that a treatment to prolong the activation period
for exhausted cells or to reactive exhausted effector cells, such as an immune check-
point blockade, would be advantageous to combine with DC therapy. A rising interest
in this combination over the last decade has led to the conception of various Phase
I/II clinical trials researching a combined DC vaccine with an immune checkpoint
blockade, with results still pending [45].

6.2. Dosing strategies. To consider a clinically relevant treatment, we consider
a discrete treatment case by running simulations up to 600 days. We first standardize
the time between injections while varying the dose amount, followed by standardizing
the total dosage amount while varying the frequency of injection. Figure 9a displays
the tumor cell response to various dose amounts given every 100 days over the course
of 600 days, with DC doses ranging from 2\times 107 to 8\times 107 cells. Larger doses respond
more positively, increasing the periods of tumor remission. With a large enough dose,
tumor eradication is possible. Figure 9b depicts the amount of tumor cells when the
total intravenous DC dose given over the 600 days is 4.5\times 108 with injections ranging
from every day to every 150 days. If the entire dose is given on Day 1, without a
follow-up treatment, the tumor aggressively grows to carrying capacity, as shown in
Figure 9c.

Together our simulations suggest that larger, less frequent doses are more efficient
in eradicating the tumor compared to the smaller, more frequent doses, though follow-
up treatment is necessary to maintain control of the tumor. Unlike the majority
of cancer treatments, toxicity has been determined to be a minimal issue for DC
treatments, as flu-like symptoms are often the most adverse effect of DC vaccines.
The low toxicity of DC vaccines allows higher, less frequent doses suggested by our
model to be feasible in practice.

7. Discussion. We present a simple, autonomous, biologically meaningful math-
ematical model which accounts for observations found in the clinical setting. The re-
duced model is analytically tractable and admits rich dynamics. We have proven the
existence of a backward bifurcation, given numerical evidence of a Hopf bifurcation,
and given thresholds, C9 and 1, for the combination parameter, \scrR 0, that guaran-
tee the elimination (\scrR 0 < C9) or existence (\scrR 0 > 1) of the tumor in the case of a
continuous treatment. Since \scrR 0 decreases asymptotically to 0 as the treatment in-
tensity (captured by vb and vt) increases, our model suggests that there is some level
of treatment that will eradicate the tumor. Now \scrR 0 increases without bound with
the proliferation rate of tumor cells. Therefore, our model suggests that if treatment
is limited, aggressive cancers will continue to exist. In a subspace of the parameter
space, the model exhibits bistability in the region \scrR crit < \scrR 0 < 1. This suggests that
more aggressive treatment strategies may be required than would be expected in the
absence of the bistability.

As noted in Remark 5.1, there exists a double zero eigenvalue if we allow
\sim 
\delta E = 0.

This suggests the possibility of a BT bifurcation. The close proximity of pitchfork-
like and Hopf bifurcations illustrated by numerical simulations and shown in Figure
4 provide further evidence of a possible BT bifurcation. It is known that a BT
bifurcation may give rise to a homoclinic orbit. For our analysis, we assume that vt
and vb are nonnegative and all other parameters are positive. Therefore, there is no
BT in the relevant parameter space. Nevertheless, simulations suggest that system
(2.2) admits a homoclinic orbit connecting the tumor-free equilibrium to itself. In
the absence of this homoclinic connection, it is possible to show that the system
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(a) Tumor with fixed timing, varying dose
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(c) Entire dose of 4.5\times 108 DCs on Day 1

Fig. 9. Tumor response shown with respect to various doses and timings. (a) Intravenous
injections of 2 \times 107 to 8 \times 107 cells given every 100 days for 600 days. (b) Total DC dose of
4.5 \times 108 injected intravenously over 600 days, with injection times from every day to every 150
days. (c) Entire 4.5\times 108 DC dose injected intravenously on Day 1.

is uniformly strongly persistent when \scrR 0 > 1. However, an analytic proof of the
existence of this homoclinic connection and precise conditions for its existence remain
open questions.

A sensitivity analysis using the PRCC method via LHSs reveals the main driv-
ers of \scrR 0 that will most effectively lower \scrR 0, thereby improving the efficacy of the
treatment. We conclude that the natural inactivation rate of CTLs (ram) is most
positively correlated with \scrR 0, while the intravenous dose amount (vb), the intratu-
moral dose amount (vt), the kill rate of tumor cells by activated CTLs (ct), and the
activation/proliferation rate of CTLs (c) are negatively correlated. An increased DC
treatment, whether intratumoral or intravenous, in conjunction with a treatment tar-
geting a decrease in ram or an increase in ct or c, would yield optimal results. Analysis
regarding the critical subthreshold of \scrR 0, \scrR crit, reveals that the tumor inactivation
rate of CTLs (ce) is important in the threshold sufficient for tumor eradication. Treat-
ments to decrease ce would similarly prove beneficial as a combination treatment.
Immune checkpoint blockades would act to decrease ram, and their combination with
DC therapies is the subject of many ongoing clinical trials.
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