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Abstract Bieberbach constructed, in 1933, domains inC2 whichwere biholomorphic
to C

2 but not dense. The existence of such domains was unexpected. The special
domains Bieberbach considered are basins of attraction of a cubic Hénon map. This
classical method of construction is one of the first applications of dynamical systems
to complex analysis. In this paper, the boundaries of the real sections of Bieberbach’s
domains will be calculated explicitly as the stable manifolds of the saddle points. The
real filled Julia sets and the real Julia sets of Bieberbach’s map will also be calculated
explicitly and illustrated with computer generated graphics. Basic differences between
real and the complex dynamics will be shown.
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1 Introduction

Bieberbach constructed, in 1933, domains in C
2 biholomorphic to C

2 but omitting
an open set. The existence of these domains was unexpected, because the analogous
statement for the one-dimensional plane C is false due to Picard’s theorem, which
ensures that C is the only domain in the plane biholomorphic to C. Such domains �

in C
2 are referred to as Fatou–Bieberbach domains (see [4] and [5]). Their classical

method of construction, due to Fatou, is one of the first applications of dynamical
systems to complex analysis.

Bieberbach considered two domains �+
C
and �−

C
which are basins of attraction of

the same automorphism

f (z, w) :=
(

w,
z

2
− w3 + 3

4
w

)
.

Both basins are biholomorphic to C2, according to a result originating with Poincaré,
but obviously not all of C2, since they are disjoint. These basins are symmetric with
respect to the origin, and Bieberbach’s map f is one of the simplest having two basins
in such a geometric relationship to each other.

For over two decades now, with the incentive from the visualization possibili-
ties offered by computer graphics, renewed interest in higher-dimensional complex
dynamics has led to many interesting topological results. For example, the basins
�+
C
and �−

C
have the same boundary in C

2 and that boundary is never a topolog-
ical manifold [2, Theorem 2]. Surprisingly enough, however, computer pictures of
the real sections of these boundaries look smooth. The purpose of this paper is to
present a proof of that fact. It will be shown that the boundaries of the real basins
�+ := �+

C
∩ R

2 and �− := �−
C

∩ R
2 in R

2 coincide and are composed exactly of
the real stable manifolds of 3 saddle points. Whereas in the standard literature it is
sometimes stated that basin boundaries are smooth on the basis of computer studies
or numerical calculations (see [7, p. 503]), an explicit proof is given here.

There are several features of Bieberbach’s domains illustrating basic differences
between real and complex dynamics. Bieberbach’s map leads to domains inR2 biana-
lytic to all ofR2 whose boundaries coincide. However, in contrast to the complex case,
they are not described as the closure of the real stable manifold of an arbitrary saddle
point [2, Theorem 1]. Furthermore, in the complex case there are always infinitely
many periodic points [3], but in Bieberbach’s example there are only 5 [6, Proposition
6.5]. In the complex case, the intersection of �+

C
(resp., �−

C
) with a complex line

is always bounded [1, Theorem 1]; see also [6, Theorem 4.3], whereas �+ and �−
are unbounded. Another difference is that the boundary of the complex basin �+

C
is

also the boundary of all points in C2 with unbounded forward orbits [2], whereas the
boundary of the real basin �+ is not the boundary of the forward escaping set.

The paper is organized as follows: In the next section, first a closed polygon R in
R
2 will be shown to contain all real points with bounded forward as well as backward
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Fig. 1 The closed polygon R

orbits. Then the fate of the forward and the backward orbit of every point in R will be
described. In the third section, the stable and the unstable manifolds of every saddle
point will be located. The real filled Julia sets and the real Julia sets are calculated
explicitly in the fourth section in terms of the 5 real periodic points. The real basin
boundaries can be completely described in the last section which also contains a
revealing computer generated image of those basins.

2 Orbit Behavior

Consider f (x, y) = (y, x
2 − y3+ 3

4 y) as a self-map of R2. The points p+ = ( 12 ,
1
2 ),

p− = (− 1
2 ,− 1

2 ) are obviously fixed points. The third fixed point is at the origin and

that is a saddle. There is also a period two saddle at p = (−
√
5
2 ,

√
5
2 ), p′ = (

√
5
2 ,−

√
5
2 ).

The backward iterate of (x, y) is f −1(x, y) = (2x3 − 3
2 x + 2y, x).

The first objective is to locate the set KR of points in R
2 with bounded for-

ward and bounded backward orbits, since they are the observables. KR also gen-
erates the set K+

R
of points with bounded forward orbits as well as the set K−

R
of

points with bounded backward orbits (see Sect. 4). We will use a partitioning of
the real plane similar to that in [6, p. 132]. As a first estimate it will be shown that
KR is contained in a closed polygon R (Fig. 1) with corners given by the 8 points:

p, ( 12 ,
√
5
2 ), p+, (

√
5
2 , 1

2 ), p
′, (− 1

2 ,−
√
5
2 ), p−, (−

√
5
2 ,− 1

2 ).
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Moreover, except for the periodic points p, p′, p+, p−, the set KR is in the interior of
R. The proof will use the backward iterates.

Lemma 2.1 KR ⊂ R and KR \ {p, p′, p+, p−} ⊂ int R.

Proof The proof will show that outside of the interior of R every point except
p, p′, p+, p− escapes to infinity either under forward or under backward iteration
of f .

The complement of the interior of R will be partitioned into the following four
closed quadrants Qk, 1 ≤ k ≤ 4 (Fig. 2) and their reflections Q′

k = σ(Qk) at the
origin where σ(x, y) = (−x,−y):

Q1 := {(x, y) ∈ R
2 : x ≤ −1/2, y ≤ −1/2}

Q2 := {(x, y) ∈ R
2 : x ≤ −√

5/2, y ≤ √
5/2}

Q3 := {(x, y) ∈ R
2 : x ≤ −√

5/2, y ≥ √
5/2}

Q4 := {(x, y) ∈ R
2 : x ≥ −√

5/2, y ≥ √
5/2}

It will be shown that f n(x, y) → ∞ if (x, y) is in Q3 \ {p} and f −n(x, y) → ∞
when (x, y) is in Q1, Q2, or Q4 but is not p or p−. If we interchange Qk and Q′

k , the
corresponding statements hold, since f ◦ σ = σ ◦ f and f −1 ◦ σ = σ ◦ f −1. The
quadrants are mapped as follows:

f −1(Q1) ⊂ Q1, f −1(Q2) ⊂ Q′
4, f (Q3) ⊂ Q′

3, f −1(Q4) ⊂ Q′
2 (Fig. 3).

Wewill first consider Q3. If (x, y) lies in Q3 but y �=
√
5
2 , then its image under f lies

further away from the origin with respect to the pseudonorm |(x, y)| = |y− x
2 | which

is obviously the y-intercept of the line through (x, y) with slope 1
2 . To see this, notice

that |(x, y)| = y − x
2 if (x, y) ∈ Q3 and when (x, y) ∈ Q′

3, then |(x, y)| = x
2 − y.

Since f (Q3) ⊂ Q′
3, if (x, y) ∈ Q3 with y �=

√
5
2 , then

| f (x, y)| − |(x, y)| = − x

2
+ y3 − y

4
− y + x

2
= y

(
y2 − 5

4

)
> 0.

Using the fact that the pseudonorm is preserved by the reflection σ at the origin, it
immediately follows that when (x, y) ∈ Q′

3 \ {p′}, then | f (x, y)| − |(x, y)| > 0 if

y �= −
√
5
2

If (x, y) ∈ Q3 \ {p} with y �=
√
5
2 , then y1 �= −

√
5
2 for f (x, y) = (x1, y1) ∈

Q′
3 \ {p′} and

| f 2(x, y)| > | f (x, y)| > |(x, y)|.

The same inequalities hold for (x, y) ∈ Q′
3 \ {p′}with y �= −

√
5
2 due to the properties

of σ. By induction, for a point (x, y) in (Q3∪Q′
3)\{p, p′}with |y| �=

√
5
2 the sequence

(| f n(x, y)|)n∈N is strictly monotonically increasing.
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Whenever |y| =
√
5
2 , after one iterate |y1| �=

√
5
2 for f (x, y) = (x1, y1). Conse-

quently, (| f n(x, y)|)n≥1 is strictly monotonically increasing for all points (x, y) in
(Q3 ∪ Q′

3) \ {p, p′}. That sequence is also unbounded; otherwise, it would converge
to some value r where |a| = r for every accumulation point a of ( f n(q)). Because
Q3 is closed, a ∈ Q3. This is a contradiction, since then | f (a)| > |a| would follow,
contradicting the fact that f (a) is also an accumulation point in Q3 and therefore
| f (a)| = |a|. It follows that f n(x, y) → ∞ as n → ∞ for (x, y) ∈ Q3.

Now consider Q1. If (x, y) ∈ Q1, then f −1(x, y) ∈ Q1. Using the pseudonorm
|(x, y)| = |y + x

2 | in Q1, we see that for (x, y) ∈ Q1,

|(x, y)| = −y − x

2
and

| f −1(x, y)| = |(x−1 , y−1)| = −y−1 − x−1

2

= −x − x3 + 3x

4
− y = − x

4
− x3 − y.

Therefore,

| f −1(x, y)|−|(x, y)|=−x − x3+ 3x

4
−y + y + x

2
= −x3 + x

4
= −x

(
x2 − 1

4

)
.

This difference is positive for x < − 1
2 . If x = − 1

2 and (x, y) ∈ Q1, then f −1(x, y) =
(x−1 , y−1) satisfies x−1 < −1/2 if and only if y < − 1

2 , implying by induction that for
(x, y) ∈ Q1 \ p− the sequence (| f −n(x, y)|)n≥1 is strictly monotonically increasing.
As above, it is unbounded and f −n(x, y) → ∞ as n → ∞ for (x, y) ∈ Q1 \ p−
follows.

Finally, we will consider Q2 and Q4. Note that Q2 and Q1 overlap, and once
any backward iterate of a point (x, y) in Q2 lands in Q1, then its fate is sealed and
f −n(x, y) → ∞ as n → ∞. Thus, we only need to consider points (x, y) ∈ Q2 such
that f −n(x, y) /∈ Q1 for every n.

Using the maximum norm |(x, y)| = max{|x |, |y|}, we arrive at the following:

If (x, y) ∈ Q2 \ Q1, then x ≤ −
√
5
2 ,− 1

2 ≤ y ≤
√
5
2 and |(x, y)| = |x | = −x . If

(x, y) ∈ Q′
4\Q1, then− 1

2 ≤ x ≤
√
5
2 , y ≤ −

√
5
2 and |(x, y)| = |y| = −y. Therefore,

when (x, y) ∈ Q2 \ Q1 and f −1(x, y) ∈ Q′
4 \ Q1, the difference

| f −1(x, y)| − |(x, y)| = −x + x = 0.

However, when (x, y) ∈ Q′
4 \ Q1, then it is no restriction to assume that f −1(x, y) ∈

Q2 \ Q1, and the difference

| f −1(x, y)| − |(x, y)| = −2x3 + 3

2
x − y

is positive if y < −
√
5
2 .
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Consequently, | f −2(n+1)(x, y)| > | f −2n(x, y)| and | f −(2n+1)(x, y)| > | f −(2n−1)

(x, y)| for n ∈ N and (x, y) ∈ Q2 \ Q1 with y < −
√
5
2 . That means the sequence

of the absolute values of the backward images is itself not strictly monotonically
increasing, but the subsequence of the absolute values of the odd inverse images
as well as the subsequence of the absolute values of the even inverse images
are both strictly monotonically increasing and therefore unbounded, implying that
f −n(x, y) → ∞. ��
Corollary 2.2 The backward orbit of every point q on the boundary of R which is not
p, p′, p+ or p− escapes, i.e., f −n(q) → ∞.

Proof Since q lies in one of Q1, Q2, Q4 or their reflections, Lemma 2.1 gives the
result. ��

The orbit behavior inside R will be studied in two steps. All points outside the
open unit square S = {(x, y) ∈ R

2 : |(x, y)| < 1
2 } will be denoted by T and will be

considered first; |(x, y)| denotes the maximum norm for points (x, y) in T .
We subdivide T as follows. Let

T1 =
{

(x, y) ∈ T : −y ≤ x ≤ 1

2
,
1

2
≤ y ≤

√
5

2

}
,

T2 =
{

(x, y) ∈ T : −
√
5

2
≤ x ≤ −y,

1

2
≤ y < −x

}
,

T3 =
{

(x, y) ∈ T : −√
5

2
≤ x ≤ −1

2
,
−1

2
≤ y ≤ 1

2

}
.

As before, σ(x, y) = (−x,−y) denotes the reflection at the origin, and for each
i ∈ {1, 2, 3}, σ(Ti ) = T ′

i . It is clear that T+ ∪ T− = T where T+ = ⋃n=3
i=1 Ti and

T− = ⋃n=3
i=1 T ′

i (Fig. 4).
We show now that the following mapping properties hold:

f (T1 \ {p}) ⊂ T ′
2 ∪ T ′

3, f (T2) ⊂ T ′
2 ∪ T ′

3, f (T3) ⊂ S ∪ T ′
1,

f (S) ⊂ S, f (S̄) ⊂ S̄, f 2(S̄) ⊂ S ∪ {p+, p−}

from which it follows that f is forward invariant, i.e., f (R) ⊂ R. The map-
ping properties result from the simple fact that − 1

4 ≤ g(y) ≤ 1
4 for the function

g(y) = −y3 + 3
4 y (Fig. 5).

Proposition 1 f (S) ⊂ S and f (S̄) ⊂ S̄.

Proof Since S = (− 1
2 ,

1
2 ) × (− 1

2 ,
1
2 ) and f (x, y) = (x1, y1) = (y, x

2 + g(y)), to
show f (S) ⊂ Swe need only note that |y1| < 1

2 . This implies f (S) ⊂ S̄. Furthermore,
S = f −1( f (S)) ⊂ f −1( f (S)), which is a closed set since the pre-image of a closed
set is closed under a continuous map. Thus, S̄ ⊂ f −1( f (S)) which yields f (S̄) ⊂
f (S) ⊂ S̄. ��
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Proposition 2 f 2(S̄) ⊂ S ∪ {p+, p−}.
Proof f (S) ⊂ S implies that f 2(S) ⊂ S. Therefore, we need only show that f 2 maps
∂S into S ∪ {p+, p−}. The boundary of S is composed of four line segments:

�1 =
{
(x, y) : |x | ≤ 1

2
, y = 1

2

}
, �2 =

{
(x, y) : |x | ≤ 1

2
, y = −1

2

}
,

�3 =
{
(x, y) : |y| ≤ 1

2
, x = −1

2

}
, �4 =

{
(x, y) : |y| ≤ 1

2
, x = 1

2

}
.

Denote f (x, y) = (x1, y1) = (y, x
2 +g(y)). If (x, y)∈�1 , then x1= 1

2 and 0≤ y1≤ 1
2 .

Let �′
4 = {( 12 , y) : 0 ≤ y ≤ 1

2 }. Thus, f (�1) ⊂ �′
4 ⊂ �4. When ( 12 , y) ∈ �′

4 \ {p+},
then 0 ≤ y < 1

2 and 1
4 ≤ y1 < 1

2 , which means that f (�′
4 \ {p+}) ⊂ S and therefore

f 2(�1 \ {p+}) ⊂ S. Since σ(�1) = �2, it follows that f 2(�2 \ {p−}) ⊂ S.
The images of �3 and �4 behave differently under f , namely except for the

corners (− 1
2 ,

1
2 ) and p−, they land in S after one iteration. To see this, consider

�′′
4 = {( 12 , y) : − 1

2 < y < 0}. If ( 12 , y) ∈ �′
4, then g(y) < 0 and − 1

2 < y1 < 1
4 , which

implies f (�′′
4 \ {( 12 ,− 1

2 )}) ⊂ S. Since f 2( 12 ,− 1
2 ) ∈ S, it follows that f 2(�4 \ {p+})

⊂ S. Because σ(�4) = �3, we have f 2(�3 \ {p−}) ⊂ S and Proposition 2 follows. ��
Proposition 3 f (T1 \ {p}) ⊂ T ′

2 ∪ T ′
3, f (T2) ⊂ T ′

2 ∪ T ′
3, f (T3) ⊂ S ∪ T ′

1.

Proof Let (x1, y1) = f (x, y). If (x, y) ∈ T1\{p}, obviously x1 = y ∈ [ 12 ,
√
5
2 ]. It will

be enough to show that −x1 < y1 = x
2 + g(y) ≤ 1

2 . Now y1 ≤ 1
2 , because x ≤ 1

2 and
g(y) ≤ 1

4 . For the lower bound, since−y ≤ x , we have y1 ≥ − y
2 +g(y) ≥ − y

2 + 1
4 >

−y if and only if y > 1
2 . However, when y = 1

2 , y1 ≥ − 1
4 + 1

4 = 0 > −y = − 1
2 .

> −y when −y(y2 − 5
4 ) > 0. That inequality is true for y ∈ [ 12 ,

√
5
2 ) but not for

y =
√
5
2 . However, for y =

√
5
2 , y1 > −

√
5
2 if and only if x > −

√
5
2 , implying that

(x, y) cannot be p. Thus, f (T1 \ {p}) ⊂ T ′
2 ∪ T ′

3.

Let (x, y) ∈ T2. Then, −
√
5
2 ≤ x ≤ −y and 1

2 ≤ y < −x . Obviously, 1
2 ≤ x1 ≤

√
5
2 .

Next, we verify that −x1 < y1 ≤ 1
2 . Note that y1 ≥ −

√
5
4 − y(y2 − 3

4 ) ≥ −
√
5
4 − y

2 ≥
−y, because |y2 − 3

4 | ≤ 1
2 and y ≥

√
5
2 . Therefore (x1, y1) ∈ T ′

2 ∪ T ′
3.

Let (x, y) ∈ T3. Then −
√
5
2 ≤ x ≤ − 1

2 and |y| ≤ 1
2 . It suffices to show

that −
√
5
2 ≤ y1 ≤ 0. But y1 ≤ − 1

4 + g(y) ≤ 0 and y1 ≥ −
√
5
4 + g(y) ≥ −

√
5
4 − 1

4 ≥
−

√
5
2 . ��
The next lemma treats all forward and all backward orbits of points in T .

Lemma 2.3 The forward orbit of a point q in T which is not p or p′ either eventually
lands in S or it stays in T and converges to p+ or p−, i.e., q ∈ �+ ∪ �−. The
backward orbit of a point q in T which is not p+ or p− either eventually lands outside
R and escapes, i.e., q ∈ Wu(∞), or it remains in T and converges to {p, p′}, i.e.,
q ∈ Wu(p, p′).
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Proof Note that the maximum norm |(x, y)| is |y| = y for (x, y) ∈ T1 and |(x, y)| =
|x | = −x for (x, y) ∈ T2 ∪ T3. Similar statements hold when Ti is replaced by T ′

i .
Furthermore, when (x, y) ∈ T1, then | f (x, y)| = |(x, y)| = |y|. When (x, y) ∈ T2,
then |(x, y)| = |x | > | f (x, y)| = |y|, because |x | = −x, |y| = y and −x > y by the
definition of T2.

However, if f (x, y) ∈ S, the next lemmawill treat that forward orbit. Consequently,
after Proposition 3, we need only consider (x, y) ∈ T3 with f (x, y) ∈ T ′

1. In that case,
|(x, y)| = |x | = −x and | f (x, y)| = − x

2 + y3 − 3
4 y. Thus, |(x, y)| > | f (x, y)| if

and only if g(y) = y(y2 − 3
4 ) < − x

2 . However,
1
4 ≤ − x

2 and g(y) < 1
4 if y > − 1

2 .
When y = − 1

2 , then |(x, y)| > | f (x, y)| if and only if x < − 1
2 . Therefore, if

(x, y) ∈ T3 \ {p−}, then |(x, y)| > | f (x, y)|. Similarly, if (x, y) ∈ T ′
3 \ {p+} with

f (x, y) ∈ T1, then |(x, y)| > | f (x, y)|. To summarize, for all points (x, y) ∈ T whose
forward orbit remains in T , the sequence (| f n(x, y)|)n is monotonically decreasing.
Furthermore, the sequence of the norms of all even forward iterates (| f 2n(x, y)|)n is
strictly monotonically decreasing for every point (x, y) ∈ T \ {p+, p−}. It remains to
show that f n(x, y) → p+ or f n(x, y) → p−. Since | f n(x, y)| ≥ 1

2 for every n ∈ N,
this sequence converges. Let r = limn→∞ | f n(x, y)|. Then r ≥ 1

2 .
We will see now that r = 1

2 . Because T is compact, the forward iterates f n(x, y)
have at least one accumulation point a. Then |a| is an accumulation point of the conver-
gent sequence (| f n(x, y)|)n and |a| = r . Since f (a) and f 2(a) are also accumulation
points of f n(x, y), we have |a| = | f (a)| = | f 2(a)| = r . If r > 1

2 , then every accu-
mulation point a would lie in T and the contradiction | f 2(a)| < |a| = r = 1

2 would
follow.

Thus, every accumulation point a must lie on the boundary of S. The only pos-
sible accumulation points however are p+ and p−, since otherwise f 2(a) ∈ S as
noted above in Proposition 2. The backward invariance of the two basins �+,�−
implies then that (x, y) must lie in one of them and consequently f n(x, y) → p+ or
f n(x, y) → p−.
Consider a pointq in T which is not p+ or p−.Wewill investigate the behavior of the

backward orbit O−
f (q) = { f −n(q) : n ∈ N} of q. For q ∈ T , O−

f (q)∩S = ∅ because
otherwise the forward invariance of S (Proposition 1) results in the contradictionq ∈ S.
Thus, either O−

f (q) ⊂ T or there is an n with f −n(q) not in T and therefore not in
R. If f −n(q) is not in R, it cannot be in Q3 ∪ Q′

3, due to forward invariance, and
therefore f −n(q) → ∞ by Lemma 2.1.

Consider the case O−
f (q) ⊂ T . The sequence (| f −n(q)|)n will be shown to

be monotonically increasing. If q = (x, y) ∈ T2 ∪ T3 and f −1(q) = (x−1 , x)
then obviously | f −1(q)| ≥ |x | = |q| by the definition of the maximum norm. If
q = (x, y) ∈ T1, then |q| = |y| = y and f −1(q) ⊂ T ′

3∪(R2\R).When f −1(q) ∈ T ′
3,

then |x | ≤ 1
2 and | f −1(q)| = |x−1 | = x−1 = x(2x2 − 3

2 ) + 2y. Consequently,
| f −1(q)| = x−1 ≥ |q| = y if and only if x(2x2 − 3

2 ) ≥ −y. But −y ≤ − 1
2 , and thus

− 1
2 ≤ x(2x2 − 3

2 ), since −x ≥ − 1
2 and −(2x2 − 3

2 ) ≥ 1, proving the monotonicity.

If a is any accumulation point of ( f −n(q))n , let r = |a|. Obviously, r ≤
√
5
2 .

Because f −m(a) is also an accumulation point, it follows that | f −m(a)| = |a| = r
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Fig. 6 f −1(Ti ) and f −1(T ′
i ) for i = 1, 2, 3

for everym ∈ N. Hence, a is on the boundary of R and r =
√
5
2 , implying that a is not

p+ or p−. Due to Corollary 2.2, a must be either p or p′ proving the claim. (Fig. 6) ��
To treat the orbit behavior inside S, subdivide S \ (0, 0) into 4 open squares

S1 =
{
(x, y) ∈ R

2 : −1

2
< x < 0,−1

2
< y < 0

}
,

S2 =
{
(x, y) ∈ R

2 : −1

2
< x < 0, 0 < y <

1

2

}
,

S′
1 = σ(S1), S′

2 = σ(S2).

The preimages of Si and Ti under f are depicted in Figs. 7, 8.

Proposition 4 f (S1) ⊂ S1, f (S2) ⊂ S′
1 ∪ S′

2
f −1(S1) ⊂ S1 ∪ S′

2 ∪ T3, f −1(S2) ⊂ S′
2 ∪ T ′

3 ∪ (R \ R).

Proof Let (x, y) = S1. Clearly, x
2 + y( 34 − y2) < 0, since 3

4 − y2 > 1
2 . From

− 1
2− x

2 < − 1
4 <

y
2 < y( 34−y2), it follows that x2+y( 34−y2) > − 1

2 . and f (x, y) ∈ S1.
If (x, y) ∈ S2, then f (x, y) is in the right half-plane. Due to Proposition 1, f (S) ⊂ S,
implying f (S2) ⊂ S′

1 ∪ S′
2.

To see that f −1(S1) ⊂ S1 ∪ S′
2 ∪ T3, let (x, y) be a point in S1 and let f −1(x, y) =

(x−1 , y−1). It is clear that − 1
2 < y−1 = x < 0. We note that −1 < x−1 = 2y + 2x3 −

3
2 x < 1

2 . This is because − 1
2 < x < 0 and 2x2 − 3

2 < −1 imply x−1 < 1
2 whereas

−1 < 2y < 0 < 2x3− 3
2 x implies x−1 > −1. To prove f −1(S2) ⊂ S′

2∪T ′
3∪(R\R), let
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Fig. 7 f −1(Ti ) and f −1(T ′
i ) for i = 1, 2, 3

Fig. 8 f −1(Si ) and f −1(S′
i ) for i = 1, 2

(x, y) ∈ S2. Itwill be enough to show that x−1 > 0which follows from x−1 ≥ (2x2− 3
2 )

due to x < 0 and x2 < 1
4 . ��

Obviously, the corresponding statements are true if S′
i is interchanged with Si and

T ′
3 with T3.
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The axes inside S are mapped into S1 ∪ S′
1 after at most two forward iterations:

Proposition 5 f ({(0, y) : 0 < y < 1
2 }) ⊂ S′

1, f ({(0, y) : − 1
2 < y < 0}) ⊂ S1,

f 2({(x, 0) : 0 < x < 1
2 }) ⊂ S′

1, f 2({(x, 0) : − 1
2 < x < 0}) ⊂ S1.

Proof The positive y-axis in S is mapped into S′
1, because 0 < y < 1

2 , implies
0 < y( 34 − y2) < 1

2 (
3
4 − y2) < 1

2 . The negative y-axis in S is mapped into S1 due to
σ ◦ f = f ◦ σ . The negative x-axis in S is mapped into the negative y-axis in S by f
and thus after another iteration it is mapped into S1. Similarly, the positive x-axis in
S is mapped into S′

1 after two iterations. ��
All forward and all backward orbits of points in S are treated next:

Lemma 2.4 The forward orbit of a point q in S stays in S and converges to either
(0, 0), p+ or p−, i.e., q ∈ Ws(0)∪�−∪�+. The backward orbit of q either eventually
leaves S for T or it remains in S and converges to the origin, i.e., q ∈ Wu(0).
Furthermore, �+ contains S′

1 and S1 is in �−.

Proof First consider points q in S1 ∪ S′
1. We will show that f n(q) → p+ for q ∈ S′

1,
fromwhich f n(q) → p− forq ∈ S1 follows, due toσ◦ f = f ◦σ . Letq = (x, y) ∈ S′

1.
Using the pseudonorm |(x, y)| = y + x

2 ,

| f (x, y)| − |(x, y)| = x

2
− y3 + 3

4
y + y

2
− y − x

2
= −y

(
y2 − 1

4

)
> 0.

By induction, the sequence (| f n(q)|)n is strictly increasing. It is obviously bounded,
therefore it must converge. Let r denote the limit. Let a denote an accumulation point
of the forward orbit ( f n(q))n . Then |a| = r . Since f m(a) is also an accumulation
point for every m, it follows that |a| = | f m(a)| = r for every m, implying that a
must be on the boundary of S′

1, which means that a is on the boundary of T or on
the positive x- or y-axis in S. The latter case cannot happen, because then a would
be mapped into S′

1 after two iterations by Proposition 5. Hence, a must be in T , and
Lemma 2.3 then shows that f n(q) → p+.

Consider now points q in S2 ∪ S′
2. Since forward orbits landing in S1 ∪ S′

1 have
already been treated, because of Proposition 4 it suffices to look at points q ∈ S2 with
f 2n(q) ∈ S2 for all n ∈ N and show that f 2n(q) → (0, 0).
Using the pseudonorm |(x, y)| = |y − x

2 |, we have | f (q)| − |q| = y(y2 − 5
4 ) for

q = (x, y) which is negative for q = (x, y) ∈ S2 with f (q) ∈ S′
2 and for q ∈ S′

2
with f (q) ∈ S2. Therefore, (| f n(x, y)|)n is strictly monotonically decreasing, as is
(| f 2n(q)|)n . Let r = limn→∞ | f 2n(q)|. Then r ≥ 0. Since |a| = | f 2(a)| = r for
every accumulation point a of the forward orbit ( f 2n(q))n , a cannot be in S2 and
must be on ∂S2. Due to Proposition 5, a must be the origin or on ∂S2 ∩ ∂S. But if
a = (x, 1

2 ),− 1
2 ≤ x ≤ 0, then |a| ≥ 1

2 , implying that a cannot be an accumulation
point. Similarly, if a = (− 1

2 , y), 0 ≤ y ≤ 1
2 , then |a| ≥ 1

4 which means that such
an a also cannot be an accumulation point. Consequently, a is the origin, r = 0 =
limn→∞ | f 2n(q)|. Then f 2n+1(q) → (0, 0), since the origin is a fixed point for f ,
and hence f n(q) → (0, 0) follows.
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We turn to the backward orbits of points q in S. It suffices to consider the two cases:
O−

f (q) ⊂ S1 and O−
f (q) ⊂ S2 ∪ S′

2.
Suppose now that q = (x, y) ∈ S1 and f −n(q) ∈ S1 for all n ∈ N. Letting

|(x, y)| = |y+ x
2 |, we show that the sequence (| f −n(q)|)n∈N is strictly monotonically

decreasing and converges to 0. To see this, we note that for all such (x, y) ∈ S1, the
following inequality holds:

| f −1(x, y)| − |(x, y)| =
∣∣∣∣14 x + x3 + y

∣∣∣∣ −
∣∣∣y + x

2

∣∣∣
=

(
−1

4
x − x3 − y

)
−

(
−y − x

2

)

= 1

4
x − x3 < 0,

which is true for− 1
2 < x < 0. As the sequence (| f −n(q|)n∈N is strictlymonotonically

decreasing and bounded from below by zero, we conclude that f −n(q) → (0, 0).
Otherwise (| f −n(q)|)n∈N would converge to some constant r > 0. If the point a is an
arbitrary accumulation point for the backward orbit ( f −n(q))n∈N, then |a| = r . Since
f −1(a) is also an accumulation point, it follows that | f −1(a)| = |a| = r and a cannot
be in S1, implying that a is on ∂S1. By Proposition 5, a cannot be on the negative x-
or y-axes, and thus a is either the origin or on ∂S. The latter situation would mean
f −n(a) ∈ ∂S for all n, contradicting Lemma 2.3 which states that a ∈ Wu(p, p′).
Therefore, f −n(x, y) → (0, 0).

Using the pseudonorm defined by |y − x
2 |, we now prove that | f −1(x, y)|

− |(x, y)| > 0 for every point (x, y) ∈ S2 ∪ S′
2. Without loss of generality, sup-

pose (x, y) is in S2. By definition, | f −1(x, y)| = | 74 x − x3 − y|. Since 7
4 x − x3 − y is

negative and y − x
2 is positive for all relevant values of x and y, the result will follow

if −( 74 x − x3 − y) > y − x
2 , i.e., − 7

4 x + x3 > − x
2 which is true for all x in the

interval (− 1
2 , 0). Thus, (| f −n(x, y)|)n∈N is strictly monotonically increasing for all

(x, y) ∈ S2 ∪ S′
2. From this we may deduce that (S2 ∪ S′

2) ∩ Wu(0) = ∅. ��
Remark S ⊂ Ws(0) ∪ �+ ∪ �−, S ⊂ Wu(∞) ∪ Wu(p, p′) ∪ Wu(0),
Ws(0) ∩ S ⊂ S2 ∪ S′

2, Wu(0) ∩ (S2 ∪ S′
2) = ∅

Combining Lemmas 2.3 and 2.4, we know the fate of every forward and every
backward orbit of points in R:

Lemma 2.5 The forward orbit of a point q in R, which is not p or p′, converges to 0,
p+, or p−, i.e., q ∈ Ws(0)∪�+ ∪�−. The backward orbit of a point q in R different
from p+ or p− converges to 0, {p, p′}, or escapes, i.e., q ∈ Wu(0) ∪ Wu(p, p′) ∪
Wu(∞).

In particular, we now know that R is contained in the set K+
R

of real points with
bounded forward orbits. Moreover, Lemma 2.1 implies the following result contained
in [6, Proposition 7.10]:

Remark There are only 5 real periodic points for f , namely the three fixed points
(0, 0), p+, p−, and the period 2 cycle p, p′.
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3 Stable and Unstable Manifolds

There is an unstable eigenvector v of D f 2(p) pointing into the interior of Q3 and a
parameterization � : R → R

2 of the unstable manifold Wu
f 2

(p) of p with respect to

f 2 having v as its tangent at p. A similar statement holds for a parameterization �′
of Wu

f 2
(p′) replacing p by p′ and Q3 by Q′

3. Denote �(R−) ∪ �′(R−) by Wu−(p, p′)
for the negative real numbers R− and Wu+(p, p′) := �(R+) ∪ �′(R+). Note that
Wu(p, p′) = Wu−(p, p′) ∪ Wu+(p, p′) ∪ {p, p′}.
Theorem 3.1 (i) Wu(0) ⊂ S1 ∪ S′

1 ∪ {0},
(ii) Wu(0) = Wu(0) ∪ {p+, p−},
(iii) Wu−(p, p′) ⊂ int R and Wu+(p, p′) ⊂ Q3 ∪ Q′

3,
(iv) Wu−(p, p′) �⊂ Ws(0),
(v) Ws(p, p′) ∩ R = {p, p′}.
Proof (i) If q /∈ R and q /∈ Q3 ∪ Q′

3, then f −n(q) → ∞ follows from Lemma 2.1
and therefore q /∈ Wu(0) showing that Wu(0) ⊂ R ∪ (Q3 ∪ Q′

3). Because Wu(0)
is connected, if there was a point in Wu(0) ∩ (Q3 ∪ Q′

3), then p or p′ would have
to be on Wu(0), a contradiction. Thus, Wu(0) ⊂ R. However, if q ∈ Wu(0) ∩ T ,
Lemma 2.3 implies that q ∈ Wu(p, p′) would result, a contradiction, and conse-
quently, Wu(0) ⊂ S. By the above remark, Wu(0) ∩ (S2 ∪ S′

2) = ∅ and (i) follows.

(ii) If p− is a limit point of the unstable manifold Wu(0), then by symmetry (using
the reflection map), p+ is also a limit point. To show that p− is a limit point, take
any point q ∈ Wu(0) which is not the origin. By (i) it is no restriction to assume that
q ∈ S1. After Lemma 2.4, f n(q) → p−. The invariance of the unstable manifold
implies that f n(q) ∈ Wu(0) and hence p− ∈ Wu(0). To see that p− and p+ are
the only limit points, let q ∈ L = Wu(0) \ Wu(0). By (i), q ∈ S1 ∪ S′

1. Without
restriction, let q ∈ S1. Then Lemma 2.5 implies that q ∈ ∂S1, because otherwise
q ∈ Wu(∞) ∪ Wu(p, p′). Since the set L of limit points is closed and invariant,
f −n(q) ∈ L for all n, implying that q /∈ Wu(∞) and thus q ∈ Wu(p, p′) must
follow. This in turn would mean that {p, p′} ⊂ L ⊂ S which is a contradiction. If
q ∈ ∂S1 but q is not p−, then by Lemma 2.3 it would follow that q ∈ Wu(p, p′) if
q was not on an axis in S and once again the same contradiction. If q was on an axis
in S, then f 2(q) ∈ S1 by Proposition 5 and the contradiction q ∈ Wu(p, p′) again
follows from Lemma 2.5.

(iii) Let J f 2(p) and J f 2(p
′) represent the Jacobian matrices of f 2 at p and p′ respec-

tively. Then, by the chain rule,

J f 2(p) = J f (p) · J f (p′) = J f 2(p
′) =

[ 1
2 −3

− 3
2

19
2

]

which yields the unstable eigenvector eu = 〈−.32, 1〉. Hence, by the unstable mani-
fold theorem,Wu

f 2
(p) (resp.,Wu

f 2
(p′)) is tangent to the parameterization� : R → R

2
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defined by t �→ p + t · eu (resp., �′ : R → R
2 defined by t �→ p′ − t · eu). Thus,

it is clear that Wu−(p, p′) = �(R−) ∪ �′(R−) ⊂ R by the forward invariance of
R. Furthermore, since for q ∈ Q3 ∪ Q′

3, f n(q) → ∞ as n → ∞, it follows that
Wu+(p, p′) = �(R+) ∪ �′(R+) ⊂ Q3 ∪ Q′

3.

(iv) If Wu−(p, p′) ⊂ Ws(0) were to hold, assume that Wu−(p, p′) = Ws(0) \ {0}
would follow (a fact that will be proved later). Now it will be shown thatWu−(p, p′) =
Ws(0) \ {0} implies a contradiction. This assumption means that Ws(0) ⊂ int R by
(iii). However, a point q ∈ ∂R ∩ Ws(0) can be constructed giving the contradiction.

Let a = (
√
5
2 ,− 1

3 ). Obviously, a ∈ ∂R. Furthermore, f 2(a) ∈ S′
1 which means

by Lemma 2.4 that f 2(a) ∈ �+. Consequently, a ∈ �+ due to the invariance of

basins of attraction. Let b = (
√
5
2 ,− 33

32 ). Obviously, b ∈ ∂R. A calculation shows that
f 5(b) ∈ S1 and therefore b ∈ �−, again because of Lemma 2.4 and invariance.
The line segment connecting a and b on ∂R intersects�+ as well as its complement

and therefore must contain a point q ∈ ∂�+. Since q is in R but neither in �+ nor in
�−, by Lemma 2.5 q ∈ Ws(0) must follow.

The final step is to prove that Wu−(p, p′) ⊂ Ws(0) implies Wu−(p, p′) =
Ws(0) \ {0}. We denote the two path components of Ws(0) \ {0} by C1 and C2.
Let � : R → R

2 and �′ : R → R
2 denote the parameterizations of Wu

f 2
(p) resp.,

Wu
f 2

(p′). By definition, Wu−(p, p′) = �(R−) ∪ �′(R−). By our assumption, �(R−),

and �′(R−) are path connected subsets of Ws(0) \ {0}. Since �(R−) and �′(R−) are
both forward and backward invariant under f 2, we may conclude without restriction
that �(R−) = C1 and �′(R−) = C2.

(v) By Lemma 2.5, the forward orbit of a point q in R which is not p or p′ converges
either to 0, p+ or p−. In other words, such a point q does not belong to Ws(p, p′).
Hence, Ws(p, p′) ∩ R = {p, p′}. ��

Note that Lemma 2.5 and Theorem 3.1(i) imply the

Remark Wu(0) \ {0} ⊂ �+ ∪ �−.

4 Julia Sets

The real filled Julia sets KR := K ∩ R
2, K+

R
:= K+ ∩ R

2, K−
R

:= K− ∩ R
2

and the real Julia sets J+
R

:= J+ ∩ R
2, J−

R
:= J− ∩ R

2 and JR := J ∩ R
2

for f can now be calculated in terms of the stable and unstable manifolds of the 5
periodic points {0, p+, p−, p, p′}. Note that K+ and K− are closed and K is compact
in C

2 by Friedland and Milnor [3]. By definition, J+ = ∂K+, J− = ∂K− and
J = J+ ∩ J−. Note also that K+

R
= Ws(KR) = {q ∈ R

2 : d( f n(q), KR) → 0} and
K−
R

= Wu(KR) = {q ∈ R
2 : d( f −n(q), KR) → 0} where d denotes the Euclidean

metric inR2, see [1]. In [1] it is shown that J+ is the closure inC2 of the stablemanifold
of any saddle point in C

2 and J+ is also the boundary in C
2 of every complex basin

of attraction.
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Theorem 4.1 (i) KR = Wu(0) ∪ Wu−(p, p′) ∪ {p, p′}
(ii) K+

R
= �+ ∪ �− ∪ Ws(0) ∪ Ws(p, p′)

(iii) K−
R

= Wu(0) ∪ Wu(p, p′)
(iv) J+

R
= Ws(0) ∪ Ws(p, p′)

(v) J−
R

= K−
R

(vi) JR = {0, p, p′} ∪ (Wu−(p, p′) ∩ Ws(0))

Proof (i) Clearly, KR ⊃ Wu(0) ∪ Wu−(p, p′) ∪ {p, p′}, since Wu(0) ⊂ R, imply-
ing Wu(0) ⊂ R, and Wu−(p, p′) ⊂ R by Theorem 3.1 and because R ⊂ K+

R
by

Lemma 2.5.
For the reverse inclusion, let q be a non-periodic point in KR. As KR is invari-
ant, the backward orbit of q stays in KR hence in R due to Lemma 2.1. Then,
q ∈ Wu(0) ∪ Wu(p, p′) by Lemma 2.5.

(ii) The inclusion of the right-hand side of the equation in the left-hand side is imme-
diate. Let q ∈ K+

R
. If the forward orbit O+

f (q) eventually lands in R, then q ∈
�+ ∪�− ∪Ws(0) by Lemma 2.5. Now let O+

f (q)∩ R = ∅. Then d( f n(q), KR) → 0
andq /∈ {p, p′, p+, p−}. But KR\{p, p′, p+, p−} is in the interior of R byLemma2.1,
implying that d( f n(q), {p, p′, p+, p−}) → 0. If p+ and p− are limit points ofO+

f (q),
then q ∈ �+ ∪�−. If q /∈ �+ ∪�−, then d( f n(q), {p, p′}) → 0 and q ∈ Ws(p, p′).

(iii) The inclusion ⊃ is obvious. To show the opposite inclusion, let q be a point in
K−
R

which is different from p, p′, p+ and p−. If q ∈ R, then q ∈ KR, since R is
forward invariant, and the claim follows from (i). If q /∈ R, then the entire backward
orbit O−

f (q) is not in R. However, K−
R

= Wu(KR) implies d( f −n(q), KR) → 0, and
again from Lemma 2.1 it follows that d( f −n(q), {p, p′}) → 0, i.e., q ∈ Wu(p, p′).

(iv) To prove the inclusion⊂, let q ∈ J+
R
. Then q ∈ K+

R
, since J+

R
= ∂K+∩R

2 ⊂ K+
R

because K+ is closed. On the other hand, q ∈ J+ = ∂�C+ = ∂�C− by Theorem 2 of
[1], where �C+ is the basin of attraction of p+ in C2 and �C− that of p−. It follows that
q /∈ �+ and that q /∈ �−. Part (ii) shows that q ∈ Ws(0) ∪ Ws(p, p′). The opposite
inclusion follows from Theorem 1 in [1] which proves that the closure of the stable
manifold in C2 of any saddle point is J+.

(v) The Jacobian determinant det D f of f is − 1
2 which implies by [3, Lemma 3.7]

that the 4-dimensional Lebesgue measure of K− is zero. Consequently, K− has no
interior points and J− = ∂K− = K− gives the claim J−

R
= K−

R
.

(vi) Using (iv), (v), and (iii),

JR = (Ws(0) ∪ Ws(p, p′)) ∩ (Wu(0) ∪ Wu(p, p′))
= (Ws(0) ∩ Wu(0)) ∪ (Ws(p, p′) ∩ Wu(0))

∪(Ws(0) ∩ Wu(p, p′)) ∪ (Ws(p, p′) ∩ Wu(p, p′)).

We will treat the last intersection first and show that Ws(p, p′) ∩ Wu(p, p′) =
{p, p′}. NowWs(p, p′)∩(Q3∪Q′

3) = {p, p′}, because by Lemma 2.1 points in Q3∪
Q′

3 different from p or p′ have orbits which escape to infinity under forward iteration.
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ThenWu+(p, p′) ⊂ Q3∪Q′
3 impliesWs(p, p′)∩Wu+(p, p′) = ∅. BecauseWu−(p, p′)

is in the interior of R, Theorem 3.1(v) shows that Ws(p, p′) ∩ Wu−(p, p′) = ∅.
The second intersection is also the empty set by Theorem 3.1(v), since by 3.1(i) and
(ii),Wu(0) is in R. The first intersection is equal to {0}, becauseWu(0) ⊂ S1∪S′

1∪{0}
by 3.1(i) and S1 ∪ S′

1 ⊂ �+ ∪ �− after Lemma 2.4. Finally, the third intersection is
equal toWs(0)∩Wu−(p, p′), due toWs(0)∩{p, p′} = ∅ andWs(0)∩Wu+(p, p′) = ∅,
using the fact that Wu+(p, p′) ⊂ Q3 ∪ Q′

3. ��

5 Basin Boundaries

Theorem 5.1 ∂�+ = ∂�− = Ws(0) ∪ Ws(p, p′) = J+
R
.

Proof It is clear that�+ and�− both lie in K+
R
. Then ∂�+∪∂�− ⊂ K+

R
follows, since

K+
R
is closed, implying by Theorem 4.1(ii) that ∂�+ ∪ ∂�− ⊂ Ws(0) ∪ Ws(p, p′).

To prove the opposite inclusion, it will first be shown thatWs(0) ⊂ ∂�+. Due to the
invariance of the basin boundary, it suffices to show that the local stable manifold of
the originWs

ε (0) of size ε is contained in ∂�+. Without restriction,Ws
ε (0) ⊂ S2 ∪ S′

2.
Let q ∈ Ws

ε (0) ∩ S2, and let U be a polydisk around q. Every point q ′ in U \ Ws(0)
is in �+ ∪ �− by Lemma 2.4. If q ′ ∈ �+, then q ∈ ∂�+ and σ(q) ∈ ∂�−.

It remains to show Ws(p, p′) ⊂ ∂�+, since Ws(p, p′) ⊂ ∂�− follows due to
σ(Ws(p, p′)) = Ws(p, p′)) and σ(∂�+) = ∂�−. By 3.1(iv), there is a point q ∈
Wu−(p, p

′
) such that q /∈ Ws(0). Then q is in the interior of R and by Lemma 2.5,

q ∈ �+ ∪�−. Without restriction, let q ∈ �+. An application of the Lambda Lemma
(see [7]) will be used. Take a curve C through q transversal to Wu−(p, p′) which is
contained in �+. Then parts of the backward iterates f −n(C) converge to the local
stable manifold Ws

ε (p, p′) of {p, p′} in the C1 topology proving Ws(p, p′) ⊂ ∂�+
(Fig. 9). ��

Fig. 9 The real section under Bieberbach’s map
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