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Abstract Single-type and multitype branching processes have been used to study the1

dynamics of a variety of stochastic birth–death type phenomena in biology and physics.2

Their use in epidemiology goes back to Whittle’s study of a susceptible–infected–3

recovered (SIR) model in the 1950s. In the case of an SIR model, the presence of only4

one infectious class allows for the use of single-type branching processes. Multitype 15

branching processes allow for multiple infectious classes and have latterly been used6

to study metapopulation models of disease. In this article, we develop a continuous7

time Markov chain (CTMC) model of infectious salmon anemia virus in two patches,8

two CTMC models in one patch and companion multitype branching process (MTBP)9

models. The CTMC models are related to deterministic models which inform the10

choice of parameters. The probability of extinction is computed for the CTMC via 211

numerical methods and approximated by the MTBP in the supercritical regime. The12

stochastic models are treated as toy models, and the parameter choices are made to13

highlight regions of the parameter space where CTMC and MTBP agree or disagree,14

without regard to biological significance. Partial extinction events are defined and their15

relevance discussed. A case is made for calculating the probability of such events,16

noting that MTBPs are not suitable for making these calculations. 317
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1 Introduction19

In the investigation that follows, we will use the case of an outbreak of infectious20

salmon anemia (ISA) as a test case to examine some of the features of MTBP approx-21

imation of a CTMC. Infectious salmon anemia virus (ISAv) causes (ISA) which leads22

to 15–100% accumulated mortality over the course of a several-month-long infection23

in a farm environment (Falk et al. 1997). It is found in all large salmon-producing24

countries including Norway, Scotland, Ireland, Canada, the USA, and Chile (Vike25

et al. 2009). ISAv is transmitted among finfish horizontally by passive movement of26

infected seawater (Mardones et al. 2009) and via direct contact with excretions or27

secretions of infected individuals. Salmon farms consist of a collection of net cages28

placed in open body of water. This array-like structure of a farm and the proxim-29

ity of farms to each other and to wild salmon migratory routes justifies the use of a30

metapopulation approach.31

Branching processes have been used to study a variety of biological phenomena32

dating back to their invention to answer a question regarding the extinction of aristo-33

cratic surnames. Bienaymé made the first contribution in 1845 (Seneta 1998) before34

the question was made well known by Galton and answered together with Watson in35

1873–1874 (Watson and Galton 1875). As a result, the class of single-type branch-36

ing processes came to be known as Bienaymé–Galton–Watson branching processes37

(BGWbp). A special case considering two types of individuals was studied by Bartlett38

in 1946, and BGWbp theory was extended to include general multitype branching39

processes by Kolmogorov, Dmitriev, Sevastyanov, Everett, and Ulam in the late 1940s40

(Harris 1963). BGWbp and MTBP models have been used to study a variety of phe-41

nomena in biology and physics including population dynamics, changes to the genome,42

cell kinetics, cancer, and epidemiology (Allen 2003; Allen and Lahodny 2012, 2013;43

Allen and Driessche 2013; Ball 1983; Ball and Donnelly 1995; Britton 2010; Dorman44

et al. 2004; Griffiths and Greenhalgh 2011; Harris 1963; Kimmel and Axelrod 2002;45

Whittle 1955). In particular, Allen and Lahodny studied MTBPs as an approximation46

of the outbreak dynamics of a CTMC model of infection in single- and multipatch47

models (Allen and Lahodny 2012, 2013).48

We recall earlier analysis of deterministic susceptible–infected–virus (SIV) models49

of ISAv outbreak in one and two patches to inform our investigation and aid in suitable50

parameter selection (Milliken 2016). The model in one patch is adapted from well-51

studied models (Beretta and Kuang 1998; Nowak and May 2000; Perelson and Nelson52

1999) by allowing for direct transmission via contact with infected individuals. For53

each of these two models, a companion CTMC model is introduced, as well as a54

MTBP. The probability of extinction of the disease is approximated for the CTMC55

using numerical simulation. Approximation is also made via the analysis of the MTBP,56

and the results are compared with those of numerical simulation.57

Formulation of a birth–death process as a branching process relies on the fact that58

all transitions are independent (Allen and Lahodny 2012; Harris 1963; Mode 1971).59

This is a strong biological assumption, but one commonly made for the purpose of60

mathematical modeling. In order to formulate epidemiological models as branching61

processes, an additional assumption is made: the susceptible population remains fixed62

at its initial (disease-free) population size. As a result of this assumption, MTBP only63
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The Probability of Extinction of Infectious Salmon…

provides accurate approximation of the probability of disease extinction when the total64

population size is sufficiently large. There is currently no analytic estimate for how65

large is sufficiently large. In order to illustrate the breakdown of MTBP approximation66

and explore its dependence on the underlying system and its parameters, we calculate67

the probability of extinction for a one-patch system for a range of initial population68

sizes at two different levels of infected fish mortality. We also propose a variation69

on the deterministic one-patch model by changing the assumed force of infection70

(f.o.i.). Corresponding CTMC and MTBP models are also developed. The probability71

of extinction is again calculated at various initial population sizes.72

MTBP techniques are suitable to calculate the probability of complete extinction73

of the disease in all forms and in all patches. A partial extinction event is one in which74

one or more classes of infectious individuals goes extinct, but at least some class75

remains endemic. Such events are transient from the prospective of deterministic and76

stochastic modeling and have not been considered to date. Metapopulation models are77

characterized by multiple patches and the rates of movement between them. It is of78

particular interest to consider partial extinction events in a metapopulation in which79

the disease goes extinct in some, but not all patches. Statistics like the probability of80

partial extinction events may help to understand how the underlying structure of the81

metapopulation influences the dynamics of the system. Additionally, the probability of82

extinction in a single patch of a metapopulation model may be viewed as a numerical83

rating of how susceptible that patch is to outbreak of disease. When a patch corresponds84

to a locality, this rating could then be used to optimize control strategies from the85

perspective of that patch. An attempt to study partial extinction events for an outbreak86

of ISAv in two patches using MTBP techniques led to the determination that these87

techniques are not suitable to answer such questions.88

2 Two-Patch Model of ISAv89

We begin by illustrating the use of MTBP to approximate the probability of extinction90

in metapopulation models by taking a two-patch model of ISAv as a test case. The91

CTMC is constructed so that it is related to a previously studied deterministic model92

(Milliken 2016). As a result, the quasi-steady state is equal to the endemic equilibrium93

of the deterministic model. Parameters are chosen to ensure the quasi-steady state94

associated with outbreak exists and can be easily located numerically. They are also95

chosen to ensure the accuracy of the MTBP approximation. They are not chosen for96

biological relevance.97

2.1 Deterministic SIV–SIV Model98

In previous work with Milliken (2016), we proposed a two-patch SIV model to study99

the dynamics of an ISAv infection. The two patches are coupled solely via diffusion100

of the virus. Birth and death rates are patch dependent and are denoted by a subscript101

associated with the patch. All other parameters are patch independent. The force of102

infection in the i th patch is given by Si (σ Ii + ρVi ), but the parameters σ and ρ can103

be scaled away. Rescaling yields the following system:104
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⎪

⎩

.
S1 = S1(β1 − µ1S1) − S1(I1 + V1)
.
I1 = S1(I1 + V1) − α I1
.

V1 = k(V2 − V1) − ωV1 + δ I1
.

S2 = S2(β2 − µ2S2) − S2(I2 + V2)
.
I2 = S2(I2 + V2) − α I2
.

V2 = k(V1 − V2) − ωV2 + δ I2.

(1)105

where β1, β2 are the patch-specific birth rates of susceptible fish, µ1, µ2 are the patch-106

specific, density-dependent mortality rates, α is the mortality rate of infected fish, δ107

is the rate at which infected fish shed the virus into the environment, ω is the rate at108

which it clears from the environment, and k is the rate of viral diffusion.109

System (1) admits 7 equilibria in total. Four equilibria corresponding to the110

absence of the virus: (0,0,0,0,0,0), (S1, 0, 0, 0, 0, 0), (0, 0, 0, S2, 0, 0), DFE =111

(S1, 0, 0, S2, 0, 0). Of these, only the disease-free equilibrium (DFE) is locally stable112

in the subspace associated with the absence of the disease. Let113

R
(1)
0 =

(ω(2k + ω) + δ(k + ω))β1

αω(2k + ω)µ1
R

(2)
0 =

(ω(2k + ω) + δ(k + ω))β2

αω(2k + ω)µ2
.114

Then R
(i)
0 is the patch-specific reproduction numbers corresponding to host fish only115

in patch i . System (1) admits two additional equilibria corresponding to the case where116

there are host fish only in patch one or only in patch two: (S′
1, I ′

1, V ′
1, 0, 0, V ′

2) ⇐⇒117

R0
1 > 1 and (0, 0, V ∗

1 , S∗
2 , I ∗

2 V ∗
2 ) ⇐⇒ R0

2 > 1. The basic reproduction number for118

system (1) is given by119

R0 =
1

2

(

R
0
1 + R

0
2 +

√

(R0
1 − R0

2)
2 + 4S1S2C2

)

,120

where C = δk
αω(2k+ω) . Following Milliken (2016), we have that DFE is globally121

asymptotically stable (g.a.s.) if and only if R0 ≤ 1. If R0 > 1, then the DFE is122

unstable and the virus invades and persists when introduced. In fact, the subset of123

the boundary associated with the extinction of the virus is a uniform strong repeller124

whenever R0 > 1 (Butler et al. 1986; Fonda 1988; Freedman et al. 1994; Garay 1989;125

Hofbauer and So 1989; Milliken 2016; Thieme 1993). If, in addition, the following126

symmetric conditions are met,127

R
0
1 >

µ2

µ1
Q(R0

2 − 1) and R
0
2 >

µ1

µ2
Q(R0

1 − 1),128

where Q = δk
ω(2k+ω)+δ(k+ω) , then there exists a unique positive endemic equilibrium.129
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The Probability of Extinction of Infectious Salmon…

Table 1 State transitions and rates for the two-patch CTMC model, Xt

Description Transition Rate σ (i, j)

Birth of S1 (S1, I1, V1, S2, I2, V2) '→ (S1 + 1, I1, V1, S2, I2, V2) β1S1

Death of S1 (S1, I1, V1, S2, I2, V2) '→ (S1 − 1, I1, V1, S2, I2, V2) µ1S2
1

Infection of S1 (S1, I1, V1, S2, I2, V2) '→ (S1 − 1, I1 + 1, V1, S2, I2, V2) S1(I1 + V1)

Death of I1 (S1, I1, V1, S2, I2, V2) '→ (S1, I1 − 1, V1, S2, I2, V2) α I1

Shedding of V1 (S1, I1, V1, S2, I2, V2) '→ (S1, I1, V1 + 1, S2, I2, V2) δ I1

Clearance of V1 (S1, I1, V1, S2, I2, V2) '→ (S1, I1, V1 − 1, S2, I2, V2) ωV1

Diffusion of V1 (S1, I1, V1, S2, I2, V2) '→ (S1, I1, V1 − 1, S2, I2, V2 + 1) kV1

Birth of S2 (S1, I1, V1, S2, I2, V2) '→ (S1, I1, V1, S2 + 1, I2, V2) β2 S2

Death of S2 (S1, I1, V1, S2, I2, V2) '→ (S1, I1, V1, S2 − 1, I2, V2) µ2 S2
2

Infection of S2 (S1, I1, V1, S2, I2, V2) '→ (S1, I1, V1, S2 − 1, I2 + 1, V2) S2(I2 + V2)

Death of I2 (S1, I1, V1, S2, I2, V2) '→ (S1, I1, V1, S2, I2 − 1, V2) α I2

Shedding of V2 (S1, I1, V1, S2, I2, V2) '→ (S1, I1, V1, S2, I2, V2 + 1) δ I2

Clearance of V2 (S1, I1, V1, S2, I2, V2) '→ (S1, I1, V1, S2, I2, V2 − 1) ωV2

Diffusion of V2 (S1, I1, V1, S2, I2, V2) '→ (S1, I1, V1 + 1, S2, I2, V2 − 1) kV2

2.2 Stochastic SIV–SIV Model130

From the preceding deterministic model, we construct the CTMC, X(t) = (S1(t),131

I1(t), V1(t), S2(t), I2(t), V2(t)), with the infinitesimal transition probability to state132

j from state i given by133

pi, j ('t) = P{X(t + 't) = j | X(t) = i} = σ (i, j)'t + o('t),134

where σ (i, j) is the rate associated with the transition from state i to state j and can135

be found in Table 1.136

Remark 1 Recall that the original force of infection in the i th patch given by Si (σ Ii +137

ρVi ). S and V are rescaled and µ and δ relabeled yielding (1) for easier analysis. The138

V that is retained represents a scalar multiple of the number of virions present. Let µ139

and δ reflect σ = 1 and ρ chosen so that we may interpret 1 unit of V as any number of140

virions, such as an average infectious viral dose (e.g., ID50). This makes the transition141

V '→ V + 1 in the rescaled model reasonable.142

We are interested in studying the dynamics after infectious agents are introduced143

to an entirely susceptible system. Analysis of the flow of (1) on the boundary shows144

that, in the absence of the disease, DFE is g.a.s.. Therefore, we assume that DFE is145

the initial state of the system prior to introduction of the disease. As Xt evolves in146

time, S1(t) and S2(t) evolve along with all the other state components. To formulate147

the MTBP, we first pass to embedded discrete time Markov chain (DTMC), Xn . Next,148

suppose that S1(n) ≡ S1 and S2(n) ≡ S2, the disease-free populations of susceptible149

fish in patches 1 and 2, respectively, and that each individual gives birth independently150

of other individuals. Let Zn = (I1(n), V1(n), I2(n), V2(n)) be the random variable151
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associated with the nth generation. The offspring probability generating function (pgf)152

is given by153

F(u) = ( f1(u), f2(u), f3(u), f4(u)),154

where, for i = 1, 2, 3, 4,155

fi ((u1, u2, u3, u4)) =
∞
∑

n=0

pi (r1, . . . , r4)u
r1
1 . . . u

r4
4 ,156

and pi (r1, . . . , r4) is the probability that an object of type i gives birth to r1 offspring157

of type 1, . . . , and r4 offspring of type 4. The offspring pgf for I1 is158

f1(u) =
α + δu1u2 + S1u2

1

α + δ + S1

,159

the offspring pgf for V1 is160

f2(u) =
ω + ku4 + S1u1u2

ω + k + S1

,161

the offspring pgf for I2 is162

f3(u) =
α + δu3u4 + S2u2

3

α + δ + S2

,163

and the offspring pgf for V2 is164

f4(u) =
ω + ku2 + S2u3u4

ω + k + S2

.165

The matrix of expectations M = DF(1) is given by166

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δ+2S1

α+δ+S1

δ

α+δ+S1
0 0

S1

ω+k+S1

S1

ω+k+S1
0 k

ω+k+S1

0 0 δ+2S2

α+δ+S2

δ

α+δ+S2

0 k

ω+k+S2

S2

ω+k+S2

S2

ω+k+S2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.167

A branching process is called positively regular if M is primitive. A k-many type168

process is called not singular if F(0) > 0 with respect to the standard order, and169

whenever x, y ∈ [0, 1]k with x ≤ y, then DF(x) ≤ DF(y). The i, j th entry of DF(1)170

is ∂ fi
∂u j

(1), the expected number of type j offspring of an individual of type i . Following171

Harris (1963), let qi be the extinction probability if initially there is one object of type172

i , i = 1, . . . , k. Let q = (q1, . . . , qk). Let P0 be the probability of extinction of173

the branching process given that Z0 = ( j1, . . . , jk). Since we have assumed that174

individuals give birth independent of one another,175
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P0 = q
j1

1 q
j2

2 . . . q
jk

k .176

The branching process constructed above to approximate ISAv in two patches is177

positively regular (in fact, M3 > 0). It is easily verified that it is also not singular. The178

threshold theorem of Allen and Driessche (2013) and Theorem 7.1 of Harris (1963)179

combine to give the following result.180

Theorem 1 Suppose Zn is a MTBP with probability generating function F : Rk → Rk
181

such that F(0) > 0, DF(x) ≤ DF(y) whenever x, y ∈ [0, 1]k with x ≤ y, and DF(1)182

is primitive. If R0 ≤ 1, then q = 1. If R0 > 1, then q is the unique vector 0 ≤ q < 1183

satisfying F(q) = q.184

Remark 2 For a fixed initial vector z0 , the probability of extinction P0 = P(Zn =185

0|Z0 = z0 for some n > 0). In a metapopulation model, the probability of extinction186

is, therefore, the probability that all infectious classes go extinct, in all patches. If187

we wanted to use MTBP approximation to calculate a partial extinction event, like188

extinction in one patch, we would have to recast the MTBP to only track the evolution189

of those infectious classes and assume the number of individuals in other infectious190

classes remains fixed. However, we already assumed that there are few individuals191

initially present in each infectious class. As we have discussed above, in order to192

justify the assumption that the number of individuals in a given class remains fixed,193

the initial population in that class must be sufficiently large. The MTBP is, therefore,194

not the appropriate tool to study partial extinction events.195

2.3 Numerical Example196

In order to illustrate the accuracy of MTBP approximation of the probability of total197

extinction in a metapopulation model, we choose parameter values according to two198

criteria: (i) the disease-free number of susceptible fish is sufficiently large in each199

patch for approximation by branching process; and (i i) the endemic equilibrium of200

the deterministic system (1) can be located numerically. The endemic equilibrium201

of (1) is a quasi-steady state of the CTMC and the embedded DTMC. The second202

criterion also implies that R0 > 1. Therefore, purely for the purpose of illustration203

and without regard to biological relevance, we consider the parameter vector (β1 =204

4, µ1 = 0.05,β2 = 2.4, µ2 = 0.04,α = 3.3, δ = 1.3,ω = 4, k = 3). Then S1 = 80,205

S2 = 60, R0
1 ≈ 30, R0

2 ≈ 22, and R0 ≈ 30 >> 1. Recall that P0 = q
j1

1 q
j2

2 q
j3

3 q
j4

4 ,206

where Z0 = ( j1, j2, j3, j4) and qi is the extinction probability if there is initial one207

object of type i . Because of this and due to the computational expense of simulating208

this model, we only consider initial states with one object of type i , i = 1, . . . , 4. The209

vector q of extinction probabilities is determined by iterating the pgf from the initial210

vector 0. Let P
(n)
0 denote the probability of extinction approximated by numerical211

simulation over n realizations. The results are presented in Table 2.212

By the law of large numbers, as the number of realizations, n, increases to infinity,213

P
(n)
0 tends to the true probability of extinction. Assuming that P

(n)
0 is distributed nor-214

mally, the error in approximating P0 with P
(n)
0 goes to zero like 1√

n
. This implies that215
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Table 2 Probability of extinction of the virus from the initial state (S1, I1(0), V1(0), S2, I2(0), V2(0))

and parameter vector (β1 = 4, µ1 = 0.05,β2 = 10, µ2 = 0.04,α = 3.3, δ = 1.3,ω = 4, k = 3) is
approximated by MTBP and numerically over 1,000,000 realizations

I1(0) V1(0) I2(0) V2(0) P0 P
(1,000,000)
0

1 0 0 0 0.0406 0.0410

0 1 0 0 0.0501 0.0501

0 0 1 0 0.0538 0.0542

0 0 0 1 0.0650 0.0652

approximation of P0 to three decimal places by numerical simulation requires making216

106 realizations, at great computational expense.217

The results in Table 2 suggest that the MTBP approximates the probability of218

extinction in the CTMC very accurately. In this case, we were not able to solve the219

nonlinear system of equations given by F(q) = q for an analytical solution to the220

MTBP. However, we are able to approximate q by iteration with little computational221

expense, since Fn(0) → q.222

3 One-Patch Model223

As discussed above, we must assume the number of susceptible individuals remains224

fixed at the disease-free level in order to utilize branching process techniques for SIV225

models. The disease-free population size must be at least as large as some critical value226

in order for this assumption to be reasonable. Currently, there is no analytic estimate227

of this critical size. In Sect. 5, we compare MTBP approximation and simulation of228

the CTMC at a range of small initial populations for two models. These models are229

introduced in this section and the next. The first is an invariant subsystem of (1), which230

models the dynamics of infection in a single patch. We consider this one-patch model231

because it reduces the computational expense while still retaining the key features of232

interest.233

3.1 Deterministic SIV Model234

When there is no diffusion, i.e., k = 0, then each patch of the two-patch system forms235

an invariant SIV subsystem given by:236

⎧

⎪

⎨

⎪

⎩

.
S = S(β − µS) − S f (I, V )
.
I = S f (I, V ) − α I
.

V = −ωV + δ I.

(2)237

where f (I, V ) = f1(I, V ) = (I + V ), β is the birth rate of susceptible fish, µ the238

mortality rate of susceptible fish, α the mortality rate of infected fish, ω is the rate of239
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Table 3 State transitions and rates for the CTMC SIV model

Description Transition Rate σ (i, j)

Birth of S (S, I, V ) '→ (S + 1, I, I ) βS

Death of S (S, I, V ) '→ (S − 1, I, V ) µS2

Infection (S, I, V ) '→ (S − 1, I + 1, V ) S(I + V )

Death of I (S, I, V ) '→ (S, I − 1, V ) α I

Shedding of V (S, I, V ) '→ (S, I, V + 1) δ I

Clearance of V (S, I, V ) '→ (S, I, V − 1) ωV

viral clearing and δ is the rate of viral shedding. All of these parameters are assumed240

to be positive.241

The system admits equilibria (0,0,0) (which is always unstable) and the disease-free242

equilibrium (DFE), (S,0,0). The basic reproduction number is,243

R0 =
(δ + ω)β

αωµ
. (3)244

when R0 > 1 the system also admits a unique positive endemic equilibrium. R0 = 1245

is also a threshold for the dynamics of the system. If R0 ≤ 1, then the DFE is g.a.s.. If246

R0 > 1, then the DFE is unstable and the virus invades and persists when introduced.247

The largest invariant subset of the boundary is a uniform strong repeller when R0 > 1248

(Milliken 2016; Thieme 1993).249

3.2 Stochastic SIV Model250

The CTMC model X(t) = (S(t), I (t), V (t)) associated with system (2) with251

f (I, V ) = f1(I, V ) is characterized by the transition rates given in Table 3.252

To estimate the probability of extinction of the virus, we approximate the CTMC253

near the DFE (Fig. 1). As in the two-patch case, we pass to the embedded DTMC,254

assume that S(n) ≡ S and that all individuals give birth independently. Let Zn =255

(I (n), V (n)) and construct the probability generating function (pgf) for the MTBP,256

Zn .257

F(u) = ( f1(u), f2(u)) =

(

α + δu1u2 + Su2
1

α + δ + S
,
ω + Su1u2

ω + S

)

.258

It follows that Zn is not singular and the matrix of expectations is given by259

M =

⎡

⎣

δ+2S

α+δ+S

δ

α+δ+S

S

ω+S

S

ω+S

⎤

⎦ ,260

is positive. Thus, M is primitive and Theorem 1 applies. Solving the system of nonlinear261

equations given by F(q) = q yields262
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Fig. 1 One realization of the CTMC model, Xt , compared to solution of the deterministic model. Both
simulations take initial condition (S = 240, I = 1, V = 0) and parameter vector (β = 12, µ = 0.05,α =
3.3, δ = 1.3,ω = 4)

q1 =
α + δ + ω + S −

√

(α − (ω + S))2 + δ(δ + 2(α + ω + S)

2S
, and (4)263

q2 =
ω

ω + S(1 − q1)
. (5)264

Then the probability of extinction given that Z0 = ( j1, j2) is265

P0 = q
j1

1 q
j2

2 .266

Note that, for this model, the MTBP approximation of the probability of extinction267

can be determined analytically. That is, P0 can be expressed as a continuous function268

of the parameters.269

3.3 Numerical Example270

For the purpose of illustrating the accuracy of the MTBP approximation, we consider271

the parameter vector given by (β = 4, µ = 0.05,α = 3.3, δ = 1.3,ω = 4). This272

choice of parameters yields S = 80 and R0 ≈ 32 >> 1. Let P0 denote the probability273

of extinction predicted by the MTBP, given Z0 = (I (0), V (0)). The probability of274

extinction in the CTMC is estimated by simulating numerically. Let P
(1,000,000)
0 denote275

the probability of extinction approximated by numerical simulation over 1,000,000276

realizations. The results of both approximations are presented in Table 4.277

Table 4 illustrates that, for this choice of parameters, the MTBP provides extremely278

accurate results. Since P0 can be expressed as a function of the parameters, the com-279

putational expense for MTBP approximation is negligible. However, we cannot be280

certain, a priori, whether or not the disease-free population of susceptible fish is suffi-281
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Table 4 Probability of extinction of the virus from the initial condition (S, I (0), V (0)) with the parameter
vector (β = 4, µ = 0.05,α = 3.3, δ = 1.3,ω = 4) approximated by branching process and numerically
over 1,000,000 realizations

I (0) V (0) P0 P
(1,000,000)
0

1 0 0.0406 0.0407

0 1 0.0495 0.0494

1 1 0.0020 0.0020
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0
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Fig. 2 Comparison of multitype branching process approximation to numerical simulation of probability
of extinction in single-patch model with mass action force of infection and high mortality for infected fish

ciently large without comparing the MTBP results to numerical simulation. Therefore,282

the estimate of computational expense for MTBP approximation should include the283

cost of simulating the CTMC. The additional expense for simulating the CTMC can284

be significant.285

In Fig. 2, we compare MTBP and numerical simulation for initial populations at286

ten unit increments from 10 to 50. First, note that the population of susceptible fish at287

DFE is given by S = β
µ . Therefore, by assuming µ = 1, we have that S = β. We fix288

the remaining parameters (µ = 1,α = 3.3, δ = 1.3,ω = 4) and vary β from 10 to289

50 in ten unit increments.290

Numerical data in Fig. 2 are fit with a power law curve y = bxλ where b = 4.9584291

and λ = −1.11. Not pictured, the absolute error is fit with a power law curve with292

b = 62.172 and λ = −2.743 and the relative error is fit with a power law curve with293

b = 0.4584 and λ = −0.067. Since P0 is a continuous function of the parameters,294

there was no need to fit a curve to the MTBP results.295

In Sect. 5, we will show that the character and speed of convergence of the MTBP296

approximation results to the CTMC simulation results depends on the structure of the297

model and the choice of parameters. We do this by constructing illustrations similar298

to Figs. 2 and 3 based on variations of the one-patch model. 4299
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Fig. 3 One realization of the Markov chain model compared to solution of the deterministic model. Both
simulations take initial condition (S = 240, I = 1, V = 0) and parameter vector (β = 12, µ = 0.05,α =
3.3,ω = 4, δ = 1.3, m1 = 6, m2 = 7.5, a1 = 3, a2 = 2)

4 One-Patch Model with Modified Force of Infection300

4.1 Deterministic Model301

The one-patch model given by system (2) proposes a mass action force of infection. It302

has been suggested that the f.o.i. may initially be driven by infected salmon encoun-303

tering susceptible salmon when there are low levels of free virus present at the outset304

of an exposure event. As more salmon become infected and shed more and more virus305

into the environment, the free virus may then drive the infection. To account for this,306

we modify system (2) by considering f (I, V ) = f2(I, V ) where307

f2(I, V ) =
m1 I

a1 + I + V
+

m2V

a2 + I + V
308

Note that when m1 = m2 and a1 = a2, the growth function S
(

m1 I
a1+I+V + m2V

a2+I+V

)

309

simplifies to the standard Michaelis–Menten function for I + V . System (2) with310

f (I, V ) = f2(I, V ) admits equilibria at 0 and the DFE (
β
µ, 0, 0). Following the next311

generation matrix approach (Diekmann et al. 1990; Driessche and Watmough 2002)312

the basic reproduction number is determined to be313

R0 =
m1a2 + δ

ω m2a1

αa1a2

β

µ
. (6)314

The endemic equilibrium is a root of the vector field. From
.

V = 0 we have V ′ = δ
ω I ′.315

Substituting into
.
I = 0 yields S′ = f1(I ′). Let f2(I ′) = m1 I

a1+(1+ δ
ω )I ′ and f3(I ′) =316

m2
δ
ω I ′

a2+(1+ δ
ω )I ′ . Then the nonnegative root of

.
S = 0 is a root of the equation317
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Table 5 State transitions and rates for the CTMC SIV model

Description Transition Rate σ (i, j)

Birth of S (S, I, V ) '→ (S + 1, I, I ) βS

Death of S (S, I, V ) '→ (S − 1, I, V ) µS2

Infection (S, I, V ) '→ (S − 1, I + 1, V ) S
(

m1 I
a1+I+V + m2V

a2+I+V

)

Death of I (S, I, V ) '→ (S, I − 1, V ) α I

Shedding of V (S, I, V ) '→ (S, I, V + 1) δ I

Clearance of V (S, I, V ) '→ (S, I, V − 1) ωV

β − µα f1(I ′) − f2(I ′) − f3(I ′) = 0. (7)318

Furthermore, f ′
1(I ′), f ′

2(I ′), f ′
3(I ′) > 0 and f2(0) = f3(0) = 0. Thus, (7) has a319

unique positive root if and only if f1(0) < β ⇐⇒ R0 > 1. Thus, the unique positive320

endemic equilibrium exists if and only if R0 > 1. If R0 ≤ 1, then the DFE is g.a.s..321

This system has the same dynamics on the boundary as the system with mass action322

f.o.i.. Using arguments similar to those in Milliken (2016), it follows that system (2)323

with f (I, V ) = f2(I, V ) is uniformly strongly persistent whenever R0 > 1 (Thieme324

1993).325

4.2 Stochastic Model326

The CTMC model related to system (2) with f (I, V ) = f2(I, V ) is characterized by327

the transitions and rates given in Table 5.328

We approximate the CTMC, Xn , near the DFE with the MTBP, Zn , with the pgf329

F(u) = ( f1(u), f2(u)) =

(

α + δu1u2 + S m1
a1+1 u2

1

α + δ + S m1
a1+1

,
ω + S m2

a2+1 u1u2

ω + S m2
a2+1

)

.330

The matrix of expectations is given by331

M =

⎡

⎢

⎢

⎣

δ+2S
m1

a1+1

α+δ+S
m1

a1+1

δ

α+δ+S
m1

a1+1

S
m2

a2+1

ω+S
m2

a2+1

S
m2

a2+1

ω+S
m2

a2+1

⎤

⎥

⎥

⎦

.332

Clearly, the branching process in not singular and M is a positive matrix. Thus,333

Theorem 1 applies. Let '1 = m1
a1+1 , '2 = m2

a2+1 , and334

D =
(

α'2 − '1(S'2 + ω)
)2 + δ'2

2(δ + 2α + 2S'1) + 2δω'1'2. (8)335
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Table 6 Probability of extinction of the virus from the initial condition (S, i0, v0) with the parameter
vector (β = 4, µ = 0.05,α = 3.3,ω = 4, δ = 1.3, m1 = 3, m2 = 2.5, a1 = 3, a2 = 2) approximated by
branching process and numerically over 1,000,000 realizations

I (0) V (0) P0 P
(1,000,000)
0

1 0 0.0538 0.0548

0 1 0.0596 0.0606

1 1 0.0032 0.0042

Then D > 0,336

q1 =
α'2 + δ'2 + ω'1 + S'1'2 −

√
D

2S'1'2

, and (9)337

338

q2 =
ω

ω + S'2(1 − q1)
. (10)339

Given Z0 = ( j1, j2), P0 = q
j1

1 q
j2

2 can be expressed as a continuous function of the340

parameters.341

4.3 Numerical Example342

For the purpose of illustrating the accuracy of the MTBP approximation, we consider343

the parameter vector given by (β = 4, µ = 0.05,α = 3.3,ω = 4, δ = 1.3, m1 =344

3, m2 = 2.5, a1 = 3, a2 = 2). This implies that S = 80 and R0 ≈ 34 >> 1. Let P0345

denote the probability of extinction predicted by the MTBP, given Z0 = (I (0), V (0)).346

The probability of extinction in the CTMC is estimated by simulating numerically. Let347

P
(1,000,000)
0 denote the probability of extinction approximated by numerical simulation348

over 1,000,000 realizations. The extinction probability predicted by the branching349

process approximation is compared with numerical results in Table 6.350

This model represents a variant to the one-patch model studied in Sect. 3 which351

differs only in the choice of function for the force of infection.352

5 Critical Size of Disease-Free Population353

In this section, we illustrate how variations to the underlying model affect the accuracy354

of MTBP approximation for small initial populations. Figure 2 at the end of Sect. 3355

shows how MTBP approximation diverges from the probability of extinction in the356

CTMC for small initial populations when f (I, V ) = f1(I, V ). We take this illustration357

as a baseline and vary the system in two ways. First, we leave f (I, V ) = f1(I, V ),358

but reduce the mortality rate of infected fish from α = 3.3 to α = 1.5. Second, we359

let α = 3.3 as in the baseline, but let f (I, V ) = f2(I, V ) as in the model developed360

in Sect. 4. In Fig. 4, we set f (I, V ) = f1(I, V ) and fix the parameter vector (µ =361

1,α = 1.5, δ = 1.3,ω = 4) with low mortality of infected fish and vary β from 10362

to 50 in ten unit increments. Numerical data are fit with a power law curve y = bxλ
363
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BP Approximation vs Numerical Simulation
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Fig. 4 Comparison of multitype branching process approximation to numerical simulation of probability
of extinction in single-patch model with f (I, V ) = f1(I, V ) and parameter vector (µ = 1, α = 1.5, δ =
1.3,ω = 4)
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Fig. 5 Comparison of multitype branching process approximation to numerical simulation of probability
of extinction in single-patch model with f (I, V ) = f2(I, V ) and parameter vector (µ = 1, α = 3.3, δ =
1.3,ω = 4, m1 = 6, m2 = 7.5, a1 = 3, a2 = 2)

where b = 2.7264 and λ = −1.164. Not pictured, the absolute error is fit with a power364

law curve with b = 42.109 and λ = −2.847 and the relative error is fit with a power365

law curve with b = 14.459 and λ = −1.659.366

In Fig. 5, we set f (I, V ) = f2(I, V ) and fix the parameter vector (µ = 1,α =367

3.3, δ = 1.3,ω = 4, m1 = 6, m2 = 7.5, a1 = 3, a2 = 2) and vary β from 10 to 50368

in ten unit increments. Numerical data is fit with a power law curve y = bxλ where369

b = 11.074 and λ = −1.439. Not pictured, the absolute error is fit with a power law370

curve with b = 756.67 and λ = −3.507 and the relative error is fit with a power law371

curve with b = 68.329 and λ = −2.068.372

Note that the results in Figs. 2, 4, and 5 are graphed on the same axes on the same373

scale. It is immediately evident that the character of convergence of the MTBP varies374
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Table 7 Entries represent
absolute error between
numerical results and multitype
branching process results,

|P0 − P
(1,000,000)
0 |. Column 2

corresponds to Fig. 2, Column 3
to Fig. 4 and Column 4 to Fig. 5

Init. pop. f1,α = 3.3 f1, α = 1.5 f2, α = 3.3

10 0.094 0.056 0.245

20 0.021 0.009 0.025

30 0.006 0.003 0.003

40 0.003 0.001 0.002

50 0.001 0.000 0.001

from the baseline illustration in each of the two latter ones. It is harder to see from the375

graphs themselves, but the speed of convergence varies slightly as well. This can be376

seen in Table 7.377

6 Discussion378

In this article, we use a model of ISAv in two patches and an invariant subsystem379

corresponding to one patch as toy models to develop CTMC models and MTBP380

approximations to estimate the probability of disease outbreak. In addition to these381

models, we formulate a new one-patch model by varying the force of infection func-382

tion. In the case of the two-patch model, we approximate the probability of disease383

extinction, P0, by iterating the probability generating function of the MTBP. For each384

one-patch model, characterized by its force of infection, it is possible to write the385

MTBP approximation of P0 as a continuous function of the parameters. By compar-386

ing MTBP results to numerical simulation of the related CTMC, we show that, for387

large initial populations of susceptible fish, the MTBP approximation provides a good388

estimate of P0. However, we should also note that MTBP approximation fails to pro-389

vide accurate estimates of P0 when the initial population of susceptible fish is low.390

It is therefore necessary to approximate P0 by numerical simulation concurrent with391

MTBP approximation. While the computational expense for MTBP approximation is392

negligible, the computational expense for numerical simulation of the related CTMC,393

can be very high, especially for metapopulation models.394

In this article, we have not provided an analytical estimate on how large the initial395

population of susceptible individuals needs to be in order for the MTBP approximation396

to provide a good estimate of P0. We have, however, illustrated the manner in which397

the approximation diverges from the true probability in several test cases. Comparison398

of results in Figs. 2, 4, 5 and Table 7 suggests that an analytical estimate will be model399

specific and parameter dependent.400

In Whittle (1955), Whittle determined that the probability of extinction for a401

susceptible–infected (SI) model was the reciprocal of R0. This result was also ver-402

ified by Allen and Lahodny (2012). Allen and Driessche (2013) showed that 1 − σ403

and 1−R0 have the same sign, where σ is the spectral radius of the matrix of first404

moments, M. This implies that efforts that reduce R0 will also increase the probabil-405

ity of extinction. For the models studied in this article, one way to reduce R0 is to406

decrease the birth rate of susceptible fish, β. Unfortunately, this also has the effect of407

reducing the disease-free equilibrium population size. Nevertheless, in Figs. 2, 4 and408
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5, we see that as β is decreased, the probability of extinction increases as measured409

both by branching process approximation and computer simulation.410

Metapopulation models are characterized by their patch structure and the rates of411

migration between patches. In order to study stochastic metapopulations, it would be412

useful to study how statistics like probability of extinction vary from patch to patch.413

In addition, the probability of partial extinction events, like extinction in one patch,414

may be useful in measuring the effectiveness of control strategies. One would expect415

it to be especially useful when studying the effectiveness of control strategies that are416

deployed heterogeneously. Mathematically, the problem of calculating the probability417

of extinction corresponds to the classical problem of hitting a subspace of the state418

space of the CTMC from some initial state. In the case of total extinction events, this419

relates to hitting the subspace of the state space where all infectious classes are zero.420

Taking the two-patch model (1) as an example, total disease extinction relates to hitting421

the subspace {S1, S2 ≥ 0, I1 = I2 = V1 = V2 = 0}. However, for partial extinction422

events, it relates to hitting a subspace of the state space where some infectious classes423

are zero, but others are positive. For example, extinction in patch one of the two-patch424

model relates to hitting the subspace {S1, S2 ≥ 0, I2, V2 > 0, I1 = V1 = 0}. MTBPs425

track only the infectious classes and are constructed to calculate the probability of426

hitting the origin, 0. As such, MTBP approximation is only suited to calculating the427

probability of total extinction.428

Acknowledgements This work was conducted with the support from NSF Grants DMS-1411853, DMS-429

1515661 and the Center for Applied Mathematics at University of Florida. The author would like to thank430

the referees for their helpful suggestions.431

References432

Allen LJS (2003) An introduction to stochastic process with applications to biology. Pearson/Prentice Hall,433

Upper Saddle River434

Allen LJS, Lahodny GE (2012) Extinction thresholds in deterministic and stochastic epidemic models. J435

Biol Dyn 6(2):590–611436

Allen LJS, Lahodny GE (2013) Probability of a disease outbreak in stochastic multipatch epidemic models.437

Bull Math Biol 75(7):1157–1180438

Allen LJS, van den Driessche P (2013) Relations between deterministic and stochastic thresholds for disease439

extinction in continuous- and discrete-time infectious disease models. Math Biosci 243(1):99–108440

Ball FG (1983) The threshold behaviour of epidemic models. J Appl Prob 20(7):227–241441

Ball FG, Donnelly D (1995) Strong approximations for epidemic models. Stoch Proc Appl 55(1):1–21442

Beretta E, Kuang Y (1998) Modeling and analysis of a marine bacteriophage infection. Math Biosci 149:57–443

76444

Britton T (2010) Stochastic epidemic models: a survey. Math Biosci 225:24–35445

Butler G, Freedman HI, Waltman P (1986) Uniformly persistent systems. Proc Am Math Soc 96:425–430446

Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and computation of the basic reproduction447

ratio R0 in models of infectious disease in heterogeneous populations. J Math Biol 28:365–382448

Dorman KS, Sinsheimer JS, Lange K (2004) In the garden of branching processes. SIAM Rev 46(2):202–229449

Falk K, Namork E, Rimstad E, Mjaaland S, Dannevig BH (1997) Characterization of infectious salmon450

anemia virus, an Orthomyxo-like virus isolated from Atlantic salmon (Salmo salar L.). J Virol451

71(12):9016–23452

Fonda A (1988) Uniformly persistent semidynamical systems. Proc Am Math Soc 104:111–116453

Freedman HI, Ruan S, Tang M (1994) Uniform persistence and flows near a closed positively invariant set.454

J Dyn Differ Equ 6(4):583–600455

Garay B (1989) Uniform persistence and chain recurrence. J Math Anal Appl 139:372–381456

123

Journal: 11538 Article No.: 0355 MS Code: BMAB-D-16-00308.2 TYPESET DISK LE CP Disp.:2017/9/30 Pages: 18 Layout: Small-X

A
u

th
o

r 
P

ro
o

f



un
co

rr
ec

te
d

pr
oo

f

E. Milliken

Griffiths M, Greenhalgh D (2011) The probability of extinction in a bovine respiratory syncytial virus457

epidemic model. Math Biosci 231(2):144–158458

Harris TE (1963) The theory of branching processes. Springer, Berlin459

Hofbauer J, So JW-H (1989) Uniform persistence and repellors for maps. Proc Am Math Soc 107(4):1137–460

1142461

Kimmel M, Axelrod DE (2002) Branching processes in biology. Springer, New York462

Mardones FO, Perez AM, Carpenter TE (2009) Epidemiologic investigation of the re-emergence of infec-463

tious salmon anemia virus in Chile. Dis Aquat Org 84(2):105–14464

Milliken E, Pilyugin SS (2016) A model of infectious salmon anemia virus with viral diffusion between465

wild and farmed patches. DCDS-B, Accepted466

Mode CJ (1971) Multitype branching processes theory and applications. Elsevier, New York467

Nowak MA, May RM (2000) Virus dynamics. Oxford University Press, New York468

Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-I: dynamics in vivo. SIAM Rev 41(1):3–44469

Seneta E (1998) IJ Bieneymé [1796-1878]: criticality, inequality and internationalization. Int Stat Rev470

66(3):291–301471

Thieme HR (1993) Persistence under relaxed point dissipativity (with applications to an endemic model).472

SIAM J Math Anal 24(2):407–435473

Van Den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for474

compartmental models of disease transmission. Math Biosci 180:29–48475

Vike S, Nylund S, Nylund A (2009) ISA virus in Chile: evidence of vertical transmission. Arch Virol476

154(1):1–8477

Watson HW, Galton F (1875) On the probability of the extinction of families. J Anthropol Inst Gt Britain478

Irel 4:138–144479

Whittle P (1955) The outcome of a stochastic epidemic- a note on Bailey’s paper. Biometrika 42:116–122480

123

Journal: 11538 Article No.: 0355 MS Code: BMAB-D-16-00308.2 TYPESET DISK LE CP Disp.:2017/9/30 Pages: 18 Layout: Small-X

A
u

th
o

r 
P

ro
o

f



un
co

rr
ec

te
d

pr
oo

f

Journal: 11538
Article: 355

Author Query Form

Please ensure you fill out your response to the queries raised below

and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please
check your typeset proof carefully against the queries listed below and mark the
necessary changes either directly on the proof/online grid or in the ‘Author’s response’
area provided below

Query Details required Author’s response

1. Kindly check and confirm corre-
sponding author mail id is correctly
identified.

2. Kindly check and confirm inserted
city, state and country is correctly
identified for the affiliation.

3. Please provide minimum 3–6 key-
words.

4. Please check and confirm if the
inserted citation of Figs. 1 and 3 are
correct. If not, please suggest an alter-
nate citation. Please note that figures
and tables should be cited sequentially
in the text.

A
u

th
o

r 
P

ro
o

f


