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Abstract. As the practice of aquaculture has increased the interplay between
large fish farms and wild fisheries in close proximity has become ever more
pressing. Infectious Salmon Anemia virus (ISAv) is a flu-like virus a↵ecting a
variety of finfish. In this article, we adapt the standard deterministic within
host model of a viral infection to each patch of a two patch system and couple
the patches via linear di↵usion of the virus. We determine the the basic repro-
ductive ratio 0 for the full system as well as invariant subsystems. We show
the existence of unique positive equilibrium in the full system and subsystems
and relate the existence of the equilibrium to the 0 values. In particular, we
show that if 0 1, the virus persists in the environment and is enzootic in
the host population; if 0 1, the virus is cleared and the system asymptoti-
cally approaches the disease free equilibrium. We also show that, with positive
di↵usivity, it is possible for the virus to be excluded when there is a susceptible
host population in only one patch, but to persist if there are susceptible host
populations in both patches. We analyze the local stability of the equilibria
and show the existence of Hopf bifurcations.

1. Introduction. Infectious salmon anemia virus (ISAv), is the virus which causes
infectious salmon anemia (ISA) with 15 to 100% accumulated mortality over the
course of a several months long infection in a farm environment [5]. It is found in
all large salmon-producing countries including Norway, Scotland, Ireland, Canada,
the United States, and Chile [23]. ISAv is transmitted among finfish horizontally by
passive movement of infected seawater [15] and via direct contact with excretions
or secretions of infected individuals. Salmon farms consist of a collection of net
cages placed in open body of water. It is known that the location of salmon farms
among wild salmon migratory routes in British Columbia raises the level of sea lice
infection [14]. In this article we investigate the dynamics of an ISAv infection in
the setting in which a farm is in close proximity to a wild migratory route. We
propose a deterministic 2–patch model which includes both direct host-to-host and
environmental transmission of the virus within each patch. The patches are coupled
by di↵usion of the virus.
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One of the early models to study HIV transmission in vivo, called the standard
model in that area of research, was used by Nowak and May (2000) [16] and by
Perelson and Nelson (1999) [17] and has been adapted to infection in a marine
environment by Beretta and Kuang (1998) [1]. The model, as it appeared in [1],
assumes that the susceptible host population experiences logistic growth, the in-
fection of susceptible host marine bacteria can become infected only as a result of
contact with a bacteriophage and results in a nonlinear system of three ordinary
di↵erential equations. We adapt this model for a single patch to allow for the sus-
ceptible population to be able to become infected by direct contact with an infected
individual. We further assume that the change in the density of the viral compart-
ment as a result of infecting a susceptible host is negligible. Finally, we assume
the two patches are coupled via linear viral di↵usion. The result is a 6-dimensional
nonlinear system which is neither cooperative nor competitive.

This article is organized as follows: In Section 2, we introduce the model and
describe the underlying assumptions. In Section 3, we develop criteria for the
existence of positive equilibria, which we show to be unique whenever they exist,
in the full 6-dimensional system as well as in 3 and 4-dimensional subsystems. In
Section 4, we appeal to the Butler-McGehee lemma and results from persistence
theory [24] to show weak persistence of the virus. We then use results of Thieme
[21] to prove uniform strong persistence of the virus. In Section 5, we go on to
study the local stability of equilibria and the conditions for the existence of Hopf
bifurcations in the subsystems and full system. Finally, in Section 6, we summarize
the results and discuss their implications to the real world setting.

2. Model. The biological setting motivating the model is a salmon farm in close
proximity to a population of wild salmon. We assume that farmed salmon and wild
salmon have no direct contact, but that virus present in the environment can pass
between patches via di↵usion. As a simplifying assumption, we assume that the rate
of di↵usion is equal whether the virus is di↵using from the farm patch to the wild
patch or vice versa. We assume the susceptible fish experience logistic growth as in
[1] and the model allows for di↵ering birth and mortality rates in the farmed and
wild patches. We assume that infected fish cannot reproduce and experience the
same mortality regardless of what patch they are in. We let SF , IF , VF represent
the densities of susceptible farmed salmon, infected farmed salmon and the virus in
the farm patch. Similarly, let SW , IW , and VW represent densities of susceptible
and infected wild salmon and the virus in the wild patch. Then our model is

.
SF SF �F µFSF SF IF ⇢VF
.
IF SF IF ⇢VF ↵IF
.

VF k VW VF !VF �IF
.

SW SW �W µWSW SW IW ⇢VW
.

IW SW IW ⇢VW ↵IW
.

VW k VF VW !VW �IW

(1)

where �F , �W are the respective birth rates of salmon in the farmed and wild
compartments, µF , µW are the respective mortality rates of healthy salmon in the
farmed and wild compartments, ↵ is the mortality rate of infected salmon, ⇢ is the
rate of mass action infection via contact with the virus in the environment, k is the
rate of di↵usion, ! is the rate of viral clearing and � is the rate of virus shedding.
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All of the aforementioned parameters are assumed to be positive except k which is
assumed to be non-negative.

By scaling VF , VW and relabeling ⇢� � we have
.

SF SF �F µFSF SF IF VF
.
IF SF IF VF ↵IF
.

VF k VW VF !VF �IF
.

SW SW �W µWSW SW IW VW
.

IW SW IW VW ↵IW
.

VW k VF VW !VW �IW

(2)

An important feature of system (2) is that it is dissipative, that is there is a
bounded set B R6 so that 't x B for all large t and for all x R6 [18]. This is
an important feature because it implies that the system satisfies the compactness
assumption C4.1 and the hypothesis of Theorem 4.5 of Thieme [21]. This result is
the key to extending weak persistence to uniform strong persistence of the system.

Proposition 1. All nonnegative solutions of system 2 are uniformly bounded in

forward time for all k 0.

The dynamics of system (2) and the techniques we employ to understand them
rely heavily on understanding the dynamics on the boundary. We therefore analyze
invariant boundary (sub)systems along with the full system (2). These subsystems
also have important biological relevance in their own right, which will be discussed
in section 6.

The proofs of results for the various subsystems are, in many instances, similar
to the proof for the full system. In such cases, results will be o↵ered without proof
to avoid repetition.

3. Existence and uniqueness of equilibria. Since the two patches are coupled
only by viral di↵usion, in the case when k 0 system (2) uncouples into two 3–
dimensional invariant subsystems which are identical up to choice of parameters
and are given by

.
S S � µS S I V
.
I S I V ↵I
.
V !V �I

(3)

We first identify boundary equilibria by examining the flow on invariant subsets
of the boundary R3 .

Proposition 2. System (3) admits boundary equilibria 0,0,0 and DFE3
�
µ ,0,

0 . The equilibrium at the origin is always a saddle rest point.

By analyzing the next-generation matrix of system (3) we are able to deter-

mine the basic reproductive ratio
0

3, where the second subscript 3 represents the
dimension of the subsystem.

Lemma 3.1. The basic reproductive ratio for system (3) is

0
3

� ! �

↵!µ
.
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Figure 1. The invariant boundary set B is the shaded region
together with the S–axis.

Proposition 3. There exists a unique positive endemic equilibrium E3 S, I, V
of (3) if and only if

0
3 1. If

0
3 1, then solutions with positive initial conditions

approach DFE3.

When the viral di↵usivity is positive, that is k 0, system (2) admits two four
dimensional invariant boundary subspaces, namely SW IW 0 and SF IF
0 . These subspaces are exactly those in which fish are present in only one patch.
The analysis of dynamics in both patches is identical up to renaming the parameters.
The dynamics of (2) in either subspace is determined by

(4)

.
S S � µS S I V1
.
I S I V1 ↵I
.
V1 k V2 V1 !V1 �I
.
V2 k V1 V2 !V2.

Proposition 4. System (4) admits boundary equilibria 0 0,0,0,0 and DFE4
�
µ ,0,0,0 . The equilibrium at the origin is always a saddle rest point.

We now derive the basic reproductive ratios for each of these invariant 4–dimensional
subsystems and examine the criteria for the existence of positive equilibria there.
We will do this, as before, by examining the next generation matrix. First, we
define

S k
↵! 2k !

! 2k ! � k !
(5)

Lemma 3.2. The basic reproductive ratio for system (4) is given by
0
4

�
µS k ,

where S k is given by (5).

From (5) we see that S k is a monotonically increasing continuous function of
k and that S 0 S ↵!

� ! , the density of susceptible fish at the unique endemic

equilibrium of system (3), E3. Let K �
µ be the carrying capacity of the logistic

growth function for susceptible fish. Then K is the density of susceptible fish
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at DFE3 and DFE4. Then 0
4

K
S k is a monotonically decreasing continuous

function of k and 0
4 0 0

3.

Proposition 5. There exists a unique positive endemic equilibrium E4 S , I , V1 ,
V2 for system (4) if and only if

0
4 1. If

0
4 1, then solutions with positive

initial conditions asymptotically approach DFE4.

The 4–dimensional subsystem (4) corresponds to the biological case where fish
are present in one patch only. If we reinterpret this setting from the perspective of
the virus, we can look upon the two patches as one containing a resource necessary
for reproduction and the other as being devoid of resources. Mathematically, it is
possible that 0

3 1 and for some su�ciently large k, 0
4 1. Thus, it is possible

that in one patch, the resource is su�cient to sustain the virus, but as di↵usion
increases, the virus spends time in a patch without any resource. In this barren
patch the virus still experiences exponential decay due to viral clearing. Thus, the
patch is a sink for the virus. When 0

4 1 the susceptible fish in the non-barren
patch is not a rich enough resource to overcome the deleterious e↵ects of being
coupled to the sink patch.

From the perspective of susceptible fish, if the rate of di↵usion can can be in-
creased so that 0

4 decreases below 1, then increasing di↵usion prevents the invasion
of the virus. In this light, it is natural to label this phenomenon wash-out.

When referring to the 4-dimensional subspace of system (2) inhabited by sus-
ceptible type i, i F,W we will write 0

i
�i

µiS k
Ki

S k and Ei for the boundary

equilibrium corresponding to E4.
Now, we turn our attention to the full 6–dimensional system (2). We begin by

identifying the boundary equilibria. System (2) admits two non-trivial equilibria on
the boundary corresponding to the 4–dimensional subsystem (4) with fish in only
one patch, namely

EF SF , IF , VF ,0,0, VW and EW 0,0, VF , SW , IW , VW .

Corollary 1. Ei exists if and only if
0
i 1 for i F or W .

Proof. Suppose without loss of generality that SW IW 0. Then 2 becomes,
.

SF SF �F µFSF SF IF VF
.
IF SF IF VF ↵IF
.

VF k VW VF !VF �IF
.

SW 0
.

IW 0
.

VW k VF VW !VW

(6)

which corresponds to the invariant subsystem (4) by identifying S, I, V1, V2,�, µ
with SF , IF , VF , VW ,�F , µF . Thus, SF , IF , VF ,0,0, VW exists if and only if 0

F
1.

Proposition 6. In the case that Ij Vj 0 for j F or W the model becomes un-

coupled and there exists a nonnegative disease free equilibrium E0 KF ,0,0,KW ,0,
0 .

Proof. When IF VF IW VW 0, the system uncouples and in both compart-
ments it is reduced to the logistic model

.
S S �j µjS (7)
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This system admits the following four boundary equilibria in addition to those
mentioned above,

00 0,0,0,0,0,0 10
�F

µF
,0,0,0,0,0)

01 0,0,0, �W

µW
,0,0 11

�F

µF
,0,0, �W

µW
,0,0 .

Relative to the invariant subspace IF VF IW VW 0, 00 is a repeller, 10

and 01 are saddles, and 11 attracts all positive solutions. We refer to 11 as the
disease free equilibrium, which we relabel E0.

Our next result is the derivation of the basic reproductive ratio, 0, for the full
system (2). Recall that KF and KW are the disease-free equilibrium densities of
susceptible fish in the farm and wild patches respectively.

Lemma 3.3. The basic reproductive ratio for system (2) is given by

0
FW

1

2
0
F

0
W

0
F

0
W

2 4KFKWC2

where C �k
↵! 2k ! . Furthermore,

0
FW max 0

F ,
0
W .

Proof. The Jacobian matrix of (2) evaluated at the E0 has the form

J

�F
�F

µF

�F

µF
0 0 0

0 �F

µF
↵ �F

µF
0 0 0

0 � k ! 0 0 k
0 0 0 �W

�W

µW

�W

µW

0 0 0 0 �W

µW
↵ �W

µW

0 0 k 0 � k !

,

and it admits two negative eigenvalues �F , �W , and the remaining four eigenva-
lues come from the 4 4 submatrix J0, corresponding to the infectious compartments.
To derive the basic reproductive ratio 0

FW , we consider the following decomposi-
tion

J0

�F

µF

�F

µF
0 0

0 0 0 0
0 0 �W

µW

�W

µW

0 0 0 0

↵ 0 0 0
� k ! 0 k
0 0 ↵ 0
0 k � k !

F V.

Then direct calculation reveals that

V 1

1
↵ 0 0 0

�
↵!

k !
2k !

1
!

k !
2k !

�
↵!

k
2k !

1
!

k
2k !

0 0 1
↵ 0

�
↵!

k
2k !

1
!

k
2k !

�
↵!

k !
2k !

1
!

k !
2k !

and the non-zero eigenvalues of FV 1 are the eigenvalues of the 2 2 matrix

�F

µF

1
↵

� k !
↵! 2k !

�F

µF

�k
↵! 2k !

�W

µW

�k
↵! 2k !

�W

µW

1
↵

� k !
↵! 2k !

�F

µFS k
�F

µF

�k
↵! 2k !

�W

µW

�k
↵! 2k !

�W

µWS k

.
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Thus, p � �2 1
S k

�F

µF

�W

µW
� �F �W

µFµW

1
S k 2

�2k2

↵2!2 2k ! 2 and the largest root

is given by

�1
1

2

1

S k

�F

µF

�W

µW

1

S k 2

�F

µF

�W

µW

2

4
�F�W

µFµWS k 2
4
�F�W

µFµW

�2k2

↵2!2 2k ! 2

1

2

1

S k

�F

µF

�W

µW

1

S k 2

�F

µF

�W

µW

2

4
�F�W

µFµW

�2k2

↵2!2 2k ! 2

1

2
0
F

0
W

0
F

0
W

2 4KFKWC2 .

Finally, we have that

0
FW

1

2
0
F

0
W

0
F

0
W

2

1

2
0
F

0
W

0
F

0
W

max 0
F ,

0
W .

Proposition 7. If
0
FW 1, then E0 attracts all positive solutions of (2).

Proof. First, suppose that 0
FW 1, then J0 is a quasi-positive irreducible Hurwitz

matrix, and by the Perron-Frobenius theorem, there exist vT 0 and � 0 such that
vTJ0 �vT . For any " 0, there exists t0 such that SF t �F

µF
", SW t �W

µW
"

for all t t0. Consider an auxiliary functionW vTx, where x IF , VF , IW , VW
T .

Then

.
W vT J0

" " 0 0
0 0 0 0
0 0 " "
0 0 0 0

x �W " v1 IF VF v3 IW VW � "r W,

for some r 0. If " 0 is su�ciently small, we have that W t 0, which implies
that the corresponding solution converges to the E0.

Now, suppose that 0
FW 1, then there exists vT 0 such that vTJ0 0,0,0,0 .

Consider an auxiliary function

W v1
SW

�F
µF

⌧ �F

µF

⌧
d⌧ v3

SF

�W
µW

⌧ �W

µW

⌧
d⌧ vTx.

A direct calculation shows that

W v1µF SF
�F
µF

2 v3µW SW
�W
µW

2 0.

An application of LaSalle’s Invariance Principle concludes the proof.

In Lemma 3.3 we give a lower bound 0
FW so that if either 0

F or 0
W 1, then

0
FW 1. We can now give a kind of upper bound for 0

FW . Suppose that 0
3 1

in both farm and wild patches when k 0. Then there exists v1, v2 such that

v1,1
KF ↵ KF

� !
0 and v2,1

KW ↵ KW

� !
0.
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Then letting J0 be as the proof of Lemma 3.3 we have

v1,1, v2,1 J0 v1,1
KF ↵ KF

� !
, v2,1

KW ↵ KW

� !
0.

Thus, by arguments similar to those in Proposition 7, if 0
3 1 in both patches

when k 0, then 0
FW 1 for any k.

In the remainder of this section, we derive su�cient conditions for the existence
of a positive equilibrium and prove that it is unique whenever exists.

Proposition 8. There exists a unique positive equilibrium, EFW SF , IF , VF ,
SW , IW , VW for the full system 2 if and only if E0 is unstable and either

i) (a) �W
! 2 !

k � 1 !
k

� �F µWS k and;

(b) �F 1 !
k

�
k

2 ! 2 !
k � 1 !

k

� �W µFS k or;

ii) (a) �F
! 2 !

k � 1 !
k

� �W µFS k and;

(b) �W 1 !
k

�
k

2 ! 2 !
k � 1 !

k

� �F µWS k ,

where S k is given by (5).

Proof. For ease of notation we omit the bars. At equilibrium,
.
Sj 0 and

.
Ij 0 for

j F,W . Thus,
.
Sj

.
Ij

.

Sj Ij 0. Hence,

Ij
1

↵
Sj �i µiSj

where i 1 j F and i 2 j W . Substituting into the
.
Ij 0 equation

yields,

Vj
1

↵
�i µiSj ↵ Sj

with i a function of j as before. Note that Ij , Vj 0 Sj min ↵, �i

µi
. Now we

substitute the expressions for Vj into the equation
.
Vj 0 and obtain the relations

�W µWSW ↵ SW �F µFSF ↵ 1
!

k
1

!

k

�

k
SF (8)

�F µFSF ↵ SF �W µWSW ↵ 1
!

k
1

!

k

�

k
SW (9)

Relations (8) and (9) define monotonically increasing curves in the SF , SW -plane.

Solving both 8 and 9 for
�F µFSF

�W µWSW
yields

↵ 1 !
k 1 !

k
�
k SW

↵ SF

↵ SW

↵ 1 !
k 1 !

k
�
k SF

.

That is,
↵ 1 !

k 1 !
k

�
k SW

↵ SW

↵ SF

↵ 1 !
k 1 !

k
�
k SF

, (10)

a hyperbola. In the square 0,↵ 0,↵ , in the SF , SW -plane, 10 has an upper

branch with endpoints ↵, S and S,↵ , where S ↵
1 !

k

1 !
k

�
k

, and a lower branch

with endpoints 0, S k and S k ,0 .
From equation 8 and for SW min ↵, �W

µW
, we must have SF min S k , �F

µF

for solutions to be positive and feasible. Similarly, from 9 we have that SF
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min ↵, �W

µW
. Thus, any intersection between 8 and 10 or 9 and 10 must

occur on the lower branch of 10 . Consider 8 and let

' SF , SW �W µWSW ↵ SW 1
!

k

�

k
�F µFSF S SF

Since 8 (resp. 9 ) can have at most one intersection with 10 in this range,
8 and 10 have a unique intersection if and only if ' 0, S k ' S k ,0 0,
where

' 0, S k �W µWS k ↵ S k 1
!

k

�

k
�FS

' S k ,0 �W↵ 1
!

k

�

k
�F µFS k S S k

If ' 0, S k 0 and ' S k ,0 0 then

(a) �W
! 2 !

k � 1 !
k

� �F µWS k �F and;

(b) �F 1 !
k

�
k

2 ! 2 !
k � 1 !

k

� �W µFS k �W ,

a contradiction. Thus, for 8 and 10 to have a unique intersection, we must have
' 0, S k 0 and ' S k ,0 0. This holds if and only if

(a) �W
! 2 !

k � 1 !
k

� �F µWS k and;

(b) �F 1 !
k

�
k

2 ! 2 !
k � 1 !

k

� �W µFS k .

Consider 9 and let  SF , SW �F µFSF ↵ SF 1 !
k

�
k �W µWSW S

SW . Then we see via similar arguments that 9 and 10 have a unique intersec-
tion if and only if  S k ,0 0 and  0, S k 0 if and only if

(a) �F
! 2 !

k � 1 !
k

� �W µFS k and;

(b) �W 1 !
k

�
k

2 ! 2 !
k � 1 !

k

� �F µWS k .

The previous result gives necessary and su�cient conditions for the existence of
the unique positive equilibrium with thresholds in the SF , SW plane. This is the
clearest formulation with respect to the endemic equilibrium itself, since the values
of IF , VF , IW and VW are determined by SF and SW . Next, we recast the result in
terms of the stability with respect to the interior of the boundary equilibria EEF

and EEW lying in 4–dimensional faces of the boundary.

Corollary 2. There exists a unique positive equilibrium EFW if and only if E0 is

unstable, �W VW 0 when evaluated at EF and �F VF 0 when evaluated at

EW .

Proof. The Jacobian of system (2) evaluated at EF has the form

J

µFS k S k S k 0 0 0
�F µFS k S k ↵ S k 0 0 0

0 � k ! 0 0 k
0 0 0 �W VW 0 0
0 0 0 VW ↵ 0
0 0 k 0 � k !

.

It is clear that �W VW is a positive eigenvalue of J with associated eigenvector
pointing into R6 . A similar statement holds for �F VF by symmetry. Let Q
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�k
! 2k ! � k ! . Then VW Q �F µFS k and ' S k ,0 ↵ �W

1
� �F

µFS k . Thus,

' S k ,0 0 �W Q �F µFS k 0 �F
1

Q
�W µFS k ,

which correspond to i b and ii a of Proposition 8, respectively. Similarly, VF
Q �W µWS k and,

 0, S k 0 �F Q �W µWS k 0 �W
1

Q
�F µWS k

which correspond to i a and ii b of Proposition 8, respectively.

This result implies that the endemic equilibrium undergoes a transcritical bi-
furcation the positive equilibrium of one of the 4–dimensional invariant boundary
subsystems as SF , SW crosses the on of the linear constraints given in Proposition
8.

The stability of the E0 is given by the value of 0 as compared to the threshold
value 1. That is 0 1 E0 is stable and 0 1 E0 is unstable. By
Lemma 3.3 0

FW is given as a function of 0
F and 0

W , each of which is a function
of �i, µi and S k for i F or W . Therefor we can recast our previous results
regarding the local stability of equilibria in terms of the location of 0

F ,
0
W with

respect to 3 constraints

Theorem 3.4. There exists a unique positive equilibrium if and only if
0
FW 1,

0
W

µF

µW
Q 0

F 1 and
0
F

µW

µF
Q 0

W 1 , where Q is as in the previous

Corollary.

Proof. By Lemma 3.3, if either 0
F 1 or 0

W 1 then 0
FW 1. If both 0

F 1
and 0

W 1 then by the proof of Lemma 3.3 0
0 1 i↵ and only if p 1 0 where

p � �2 0
F

0
W � 0

F
0
W

�F �W

µFµW

�2k2

↵2!2 2k ! 2 . Then the equation p 1 0
gives

1 0
F

0
W

0
F

0
W

�F�W
µFµW

�2k2

↵2!2 2k ! 2

1 0
F

0
W

0
F

0
W

�F�W
µFµW

S k 2

S k 2

�2k2

↵2!2 2k ! 2

1 0
F

0
W

0
F

0
W

0
F

0
WQ2

1
0
F

0
W

1
0
W

1
0
F

1 Q2

1
1
0
F

1
1
0
W

Q2

a hyperbola in the 0
F ,

0
W -plane. Thus, it follows that 0

0 1 if 0
F ,

0
W lies

above the lower branch of this hyperbola. The lower branch of the hyperbola passes
through the points 0,1 , 1,0 and 1

1 Q , 1
1 Q . These coordinate pairs correspond

to the points 0, S k , S k ,0 and S k
1 Q , S k

1 Q in the �F

µF
, �W

µW
plane. Considering

(10) in the �F

µF
, �W

µW
-plane corresponds to the first two coordinate pairs, 0, S k and

S k ,0 . Solving for the intersection of the lower branch with the line �F

µF

�W

µW

results in the final point. Hence, being above the lower branch also corresponds to
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�F

µF
, �W

µW
being above the lower branch of (10), that is to the disease free equilibrium

being unstable.
Now, suppose 0

W
µF

µW
Q 0

F
µF

µW
Q. Then

�W
µWS k

µF

µW
Q

�F
µFS k

µF

µW
Q

µW�W
µWµFS k

Q
�F

µFS k
1

�W
�k

! 2k ! � k !
�F µFS k

That is, �W VW is a positive eigenvalue of the boundary equilibrium corresponding
to the 4-dimensional subsystem (4) with fish in only the farmed patch. Suppose
also that 0

W
µF

µWQ
0
F 1. Then

�W
µWS k

1

Q

µF�F
µFµWS k

1
�W

µWS k
1

1

Q

�F
µWS k

�k

! 2k ! � k !
�W µWS k �F

That is, �F VF is a positive eigenvalue of the boundary equilibrium correspond-
ing to the 4-dimensional subsystem with fish in only the wild patch. Then the result
follows by Corollary 2.

If 0
0 1 then i 0,4 1 for i 1,2 and �F

µF
S k ↵ and �W

µW
S k ↵. Let

x

IF
VF

IW
VW

. Then
.
x Ax where A is the submatrix of the Jacobian corresponding

to viral compartments. Let A0 be formed by replacing SF with �F

µF
and SW with

�W

µW
. Then A0 is quasi-positive and irreducible. Since 0

0 1, DFE is locally stable.

Thus, there exists � 0 and vT 0 such that vTA0 �vT . Let W vTx. Let
"F , "W 0, SF

�F

µF
"F , SW

�W

µW
"W and " max "F , "W . Then

.
W vTAx vT A0

"
F

0 0 0
0 0 0 0
0 0 "

W
0

0 0 0 0

x � " vTx � " W.

Hence, W 0 for " su�ciently small and the statement follows by the comparison
principle.

It is evident from region II of Figure 2 that when both 4–dimensional subsystems
are sinks for the virus, 0

FW 1 is su�cient for there to exist the positive EFW .
However, if one of those subsystems is a reservoir for the virus additional conditions
given in Theorem 3.4 must be met to assure the existence of the positive EFW .

4. Persistence. Having established conditions for the existence of equilibria in
the full system (2) as well as in the 3 and 4–dimensional subsystems, (3) and (4),
respectively, we now turn our attention to the question of whether the virus goes
extinct or whether it persists. We will view the flow of the system as a semidynam-
ical system on a metric space. There is a rich theory of persistence in dynamical
systems [2], [3], [6], [7], [8], [12], [13], [21], and [24].

LetX be the positive orthant of Rn together with its boundary and let ' R X
X be the solution to the (sub)system under consideration (n=3, 4 or 6 for system
(3), (4), or (2), respectively). Then the flow ' can be considered a semidynamical
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V

III
I

IV

VI
VII

II

R0
F

R
0 W

1

1

Figure 2. In regions I and II, the positive equilibrium EFW exists.
In region III, EF is unstable W.R.T. the interior and EW is stable
W.R.T.. In region V, EF DNE while EW is stable W.R.T the
interior. Regions IV and VI are the symmetric opposites of regions
III and V, respectively.

system on X such that x X, t ' t, x 't x with the properties ' 0, x x
and 't 's 't s, the group property.

Suppose that X X1 X2 the union of disjoint sets X1 and X2 and that '
is a continuous semiflow on X1. For any x X and Y X we define d x,Y
infy Y d x, y to be the distance between the point x and the set Y . Following
Thieme (1993) [21], let Y2 be a subset of X2.

We say that Y2 is weak repeller for X1 if

lim sup
t

d 't x1 , Y2 0 x1 X1.

We say that Y2 is a uniform weak repeller for X1 if there exists " 0 such that

lim sup
t

d 't x ,Y2 " x1 X1.

We say that Y2 is a strong repeller or a uniform strong repeller for X1 if lim sup is
replaced by lim inf in the above definitions. In our case, X2 will be a closed subset
of the boundary of X where the virus goes extinct in forward time and X1 will be its
complement. The dynamical system ' is called (uniformly) weakly or (uniformly)

strongly persistent if X2 is a (uniform) weak or (uniform) strong repeller for X1.
Recall, a subset M X is called forward invariant if and only if 't M M for

all t 0, backward invariant if and only if 't M M for all t 0 and fully invariant

if and only if it is both forward and backward invariant. A compact invariant subset
M Y X is called and isolated compact invariant set in Y if there is an open
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subset U X such that there is no invariant set M with M M U Y except M .
U is called and isolating neighborhood of M .

Still following [21], we define

⌦ Y2
y Y2

! y , where Y2 x X2 't x X2 t 0 .

We say that a finite covering M m
k 1Mk in X2 is isolated if the sets Mk are

pairwise disjoint subsets of X2, which are isolated compact invariant sets in X.
A set M X2 is said to be chained (in X2) to another (not necessarily distinct)

set N X2, M N , if there exists y X2 M N and a full orbit through y
such that ↵ y M and ! y N .

A finite covering M m
k 1Mk is called cyclic if, after possible renumbering,

M1 M1 or M1 M2 Mk M1 for some k 2, . . . ,m . If M is not cylic,
it is called acyclic.

Now that we have established the necessary definitions we will show first that
when 0

FW 1 the boundary set corresponding to the eventual extinction of the
virus is a weak repeller for its complement and then by a result of Thieme [21]
this boundary set is in fact a uniform strong repeller. This implies that in cases
where there are initially positive densities of both susceptible and infected individ-
uals or initially positive densities of both susceptible individuals and virus in the
environment that the virus will persist.

The basic reproductive ratio 0
FW is defined in the context of epidemiology as

the expected number of new cases of infection caused by a typical infected individual
[11]. Then 0

FW 1 implies that a typical infected individual will more than replace
themselves. Thus, if the system is at rest in the disease free equilibrium, E0, and

0
FW 1, if a small number of infected individuals are introduced, they will invade.

This in turn implies that the linearization of system evaluated at E0 indicates
growth in at least one direction, i.e. the Jacobian has at least one eigenvalue �d
with Re �d 0. The proof we provide here for weak persistence rests on the fact
that E0 is a saddle whose unstable manifold enters the interior, when 0

FW 1.
By appealing to a powerful result due to Thieme [21] we can extend from weak
persistence to uniform strong persistence.

Proposition 9. If
0
FW 1, then system (2) is weakly persistent.

Proof. If X R6 and X2 SF SW 0 IF VF IW VW 0 ,
then X2 is fully invariant with respect to ', the flow of system (2) and X1

X X2 is forward invariant. Since (2) is dissipative, we may restrict and rela-
bel X 0, C 6, X2 X2 0, C 6, and X1 X X2 for some C 0. Then
X1 and X2 are disjoint, forward invariant sets and X2 is compact. By the for-
ward invariance of X2, Y2 X2 direct examination of the flow on X2 shows that
⌦ X2 00, 10, 01,E0 . Suppose for the sake of contradiction that there exists
x1 X1 such that lim supt d 't x1 ,X2 0. Then there exists x2 X2 with
x2 ! x1 and therefore ! x2 ! x1 . By the invariance of X1 and repeated ap-
plications the Butler-McGehee Lemma, we may assume without loss of generality
that ! x2 E0 . By appealing once more to the invariance of X1 and the Butler-
McGehee Lemma, we have that there exists q1.q2 ! x1 with q1 W s E0 and
q2 Wu E0 . However, Wu E0 E0 X2 . This contradicts the assumption
lim supt d 't x1 ,X2 0. Thus, X2 is a weak repeller for X1 and ' is weakly
persistent.
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Lemma 4.1. Consider system (2) and suppose
0
FW 1, M1 00, M2 10,

M3 01 and M4 E0. Then M 4
i 1Mi is an acyclic isolated covering for

⌦ X2 in X2.

Proof. It is clear that M is an isolated cover for ⌦ X2 . If y y1,0,0,0,0,0 for 0
y1

�F

µF
, then ↵ y M1 and ! y M2 so M1 M2. Similarly, M1 M3. Now,

Wu Mj X2 W s M4 for j 2,3. Thus, M2 M4, but M2 M1 and M2 M3.
Similarly, M3 M4, but M3 M1 and M3 M2. Since Wu E0 E0 X2 ,
M4 is not chained to any other element of the covering M . Thus, M is acyclic.

Theorem 4.2. System (2) is uniformly strongly persistent if and only if
0
FW 1.

Proof. Let X, X1, X2, M1, M2, M3 and M4 be as defined in Proposition 9 and
Lemma 4.1. Then ⌦ X2 00, 10, 01,E0 , X X1 X2, a disjoint union,
X2 is compact, and M 4

k 1Mk is an acyclic isolated covering with each Mk a
weak repeller for X1. Assumption C4.1 of Thieme (1993) [21] is satisfied by the
compactness of X. Thus, by Theorem 4.5 [21], ' is uniformly strongly persistent.
By Proposition 7, if 0

FW 1 then solutions with positive initial conditions converge
to E0 X2.

Remark 1. It is possible, in a manner similar to the arguments above, to prove
persistence results of the form the n–dimensional invariant subsystem is uniformly

strongly persistent if and only if
0
n 1 for n 3, 4.

The next result is in keeping with the discussion following the the proof of Propo-
sition 5.

Corollary 3. Suppose there is a positive constant k such that S k �
µ . Then

the virus will persist in system (4) for all k 0, k and will go extinct for k k .

Proof.
0
4 is decreasing in k and equal to 1 for k k .

Corollary 4. If
0
i 1 for i F or W , then system (2) is uniformly strongly

persistent.

Proof. By Lemma 3.3, max 0
F ,

0
W 1 implies that 0

FW 1. The statement
follows by the previous Theorem.

Remark 2. In the invariant subsystems, persistence and the existence of a unique
endemic equilibrium coincide, whereas in the context of the full system, it is possible
that there is no positive equilibrium, but the system is uniformly strongly persistent.
This is a result of the fact that our boundary set is a proper subset of the boundary.
While persistence with respect to this boundary set still corresponds to the viral
compartments being bounded away from zero, it does not preclude converging to an
invariant subsystem of lower dimension. The virus is allowed to migrate between
patches via di↵usion, but the fish are restricted to their birth patch. Thus, the
system can be uniformly strongly persistent even while the fish in one patch go
extinct.

If a 4–dimensional subsystem is uniformly strongly persistent we will say that the
patch relative to the susceptible class is a reservoir for the virus. If the disease free
equilibrium in a 4-dimensional subsystem is globally asymptotically stable, then we
will say the patch relative to the susceptible class is a sink for the virus. Thus,
if either 4–dimensional subspace is a reservoir for the virus, then 0

FW 1 and
the virus persists in the full system whether or not a susceptible host is present
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in the complementary patch. However, it is clear from Figure 2 that even if both
4–dimensional subsystems are sinks for the virus, it is still possible for 0

FW 1
and hence, the virus will persist in the full system (2). In this way, local patch
dynamics strongly influence the persistence of the system.

5. Bifurcations and the existence of limit cycles. Even in the 3–dimensional
invariant subsystem, the endemic equilibrium is not guaranteed to be locally sta-
ble. Assuming that all other parameters are fixed, we show that if the rate of viral
shedding, �, is su�ciently large, then the endemic equilibrium may undergo a Hopf
bifurcation. We treat the growth rate, �, as the bifurcation parameter with the
bifurcation point a function of the remaining parameters. A similar result is given
by DeLeenheer and Smith (2003) [19] for the standard model for HIV with growth
function f1 T . The main di↵erence between that model and the 3–dimensional
subsystem (3) is the addition in (3) of the possibility of infection due to direct
contact with an infected individual. Since oscillatory behavior occurs even without
infection via direct contact, we can deduce that its introduction is not the underlying
cause of oscillations in (3). In [19], the carrying capacity is shown to be the bifur-
cation parameter. The carrying capacity in subsystem (3) is �

µ . Thus, increasing
� has the e↵ect of increasing the carrying capacity. We now give conditions under
which it is precisely increasing � that leads to a Hopf bifurcation and oscillatory
behavior in system (3).

Proposition 10. If
0
3 1 then there exist �crit and �crit such that if � �crit then

E3 undergoes a Hopf bifurcation as � increases through �crit.

Proof.

JE3

� 2µS I V S S
I V S ↵ S
0 � !

µS S S
� µS S ↵ S

0 � !

and S ↵!
! � ↵ implies each of the diagonal entries are negative. The characteristic

polynomial is given by
p � �3 a1�

2 a2� a3
Where,

a1 ↵ ! µ 1 S 0, a2 S � ↵ ! 2S µ 0, and a3 ↵! � µS 0.

Then a1a2 a3 ↵ S ! µS S � ↵ S ! S µ ↵! � µS is linear in
� with coe�cient

S ↵ S ! µS ↵! S ↵ ! µ 1 S S ! � S ↵ µ 1 S � .

Claim 1. ↵ µ 1 S � 0 �
↵ ! ↵ ! 2 4µ↵!

2
.

Proof of Claim.

↵ µ 1 S � 0

↵ µ 1
↵!

� !
� 0

�2 � ! ↵ µ↵! 0

Since by assumption � 0, we have that the last inequality holds if and only if

�
↵ ! ↵ ! 2 4µ↵!

2
.
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Figure 3. Consider system (3) with µ 1.2, ↵ 1.5, ! 0.2 and
� 1.7. Then � �crit 1.69 and �crit 19.21. Figure (a) shows
that for � 19, the simulation of the flow through S, I, V
1,1,1 converges to the positive equilibrium S, I, V . Figure (b)
shows that for � 20, the simulation for the flow through S, I, V
appears to converge to a positive limit cycle.

By Claim 1 the hypothesis on � implies that ↵ µ 1 S � 0. Thus, a1a2 a3 is
decreasing linear function of �. If we consider S to be fixed then the � is bounded
below by µS, the threshold where 0

3 1. Thus, we consider a1a2 a3 for �
µS, . Now,

0 a1a2 a3

0 ↵ S ! µS S � ↵ S ! S µ ↵! � µS

0 S ↵ S ! µS ↵! � µS ↵ S ! S ↵ S ! µS µS↵!

0 S µ 1 S ↵ � � µS ↵ S ! S ↵ S ! µS ↵!

Letting ↵ S ! � yields,

�crit µ
� µS � S ↵!

µ 1 S ↵ �
µ

� µS � S ↵!

� ↵ 1 µ S

Thus, a1a2 a3 0 for � µS,�crit , a1a2 a3 0 for � �crit and a1a2 a3 0
for � �crit.

In Section 3 we saw that the density of susceptible fish at the endemic equilib-
rium in the 4–dimensional system (4) is given by S k , a continuous function of k.
Furthermore, S 0 is the density of susceptible fish at the endemic equilibrium of
the 3–dimensional system (3). Since the equilibrium densities in all compartments
can be written as a function of he density of susceptible fish, increasing k through
zero is a perturbation of E3 from the 3–dimensional face of R4 into the interior.
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We noted that perturbing system (4) by increasing k gradually from k 0 has the
e↵ect of continuously and monotonically decreasing 0

4. In fact, in the next result,
we see that perturbing k away from zero perturbs the Hopf periodic orbit shown in
Proposition 10 into the interior of R4 .

Theorem 5.1. Suppose that
0
3 1 and � is su�ciently large. Then there exists a

continuous function � k such that E4 undergoes a Hopf bifurcation as � increases

through � k for all k su�ciently small.

Proof. Consider the linearization of (4) at E4 given by

J

µS S S 0
� µS S ↵ S 0

0 � k ! k
0 0 k k !

µS S S 0
� µS S ↵ S 0

0 � ! 0
0 0 0 !

0 0 0 0
0 0 0 0
0 0 k k
0 0 k k

A B

where S is taken to be the density of susceptibles at E4. Denote that the upper
block of A as J3 and note J3 coincides with the Jacobian of system (3) evaluated
at the unique positive equilibrium of that system. The characteristic polynomial of
J is

p � �4 a1�
3 a2�

2 a3� a4,

Let q � be the characteristic polynomial of J3. When k 0 then p � � ! q �
and Proposition 10 implies that when � �crit E4 admits a pair of purely imaginary
eigenvalues and the Routh-Hurwitz Criterion a1a2a3 a23 a21a4 0. Let

f �, k a1a2a3 a23 a21a4 (11)

and
a1
�

0;
a2
�

S;
a3
�

2k 2! � S;
a4
�

↵! 2k !

Then f �crit,0 0 and

f

�
�crit,0 a1a3

a2

�
a1a2

a3

�
2a3

a3

�
a2
1

a4

�

↵! 2S! ↵ S µS µS ↵ S ! S �crit µS

↵!S ↵ S µS �crit µS 2S!2 µS ↵ S ! S �crit µS

S!2 ↵ S ! µS ↵ S 2! µS 2↵2!2 �crit µS ↵!3 ↵ S 2! µS

a b �crit µS c ↵ S 2! µS .

The coe�cient of �crit µS is b 2S2 � 2! ↵ S µS � and the coe�cient
of ↵ S 2! µS is c S!2 ↵ S µS � . Clearly f

� �crit,0 0 whenever
� ↵ S µS. However, by hypothesis we have that � �crit which, by Claim
1 is equivalent to � ↵ S µS. Nevertheless, there exists ✏ small so that for
↵ S µS � ↵ S µS ", f

� �crit,0 0. Letting � we have that S 0

and �S ↵! so that f
� �crit,0 2 ↵! 2�crit ↵! !2 ↵ 2! 0. Thus,

f
� �crit,0 changes sign. However, for � �crit,

f
� �crit,0 is monotone. Thus, for

all but finitely many � �crit,
f
� �crit,0 0. We may increase �crit to avoid these

finitely many singular cases. Hence, for � �crit, we have that f �crit,0 0 and
f
� �crit,0 0. Thus, by the Implicit Function Theorem, there is a neighborhood

U of k 0 such that � k is a continuous function of k defined on U , � 0 �crit
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and f � k , k 0 for k U . It follows by continuity that E4 changes from stable
to unstable and admits a Hopf orbit as � increases through � k .

Theorem 5.1 shows that the birth rate of susceptible fish, �, is a bifurcation
parameter for the Hopf bifurcation. However, in the hypothesis we also require that
� is su�ciently large. The parameter � is the rate of viral shedding and represents
the positive feedback in the viral compartment due to infection. In this sense, � can
be likened to a birth rate for the virus. The next result describes the dependence
of local stability of E4 on the rate of viral shedding, �.

Proposition 11. If
0
4 1 and ↵2 4k2 ! 2k ! 2! ↵ ↵ �

k ! 2
↵

k ! , then the

equilibrium E4 of system (4) is stable for � small and unstable as � .

Proof. At E4 S S k ↵ ! 2k !
! 2k ! � k ! , I 1

↵ ↵ S � µS , V1
1
↵S � µS ,

and V2
k

↵ k ! S � µS . Then the characteristic polynomial of the Jacobian

evaluated at equilibrium is

p �, k a4 k �4 a3 k �3 a2 k �2 a1 k � a0 k

where

a4 k 1

a3 k 2k µS k ↵ S k 2!

a2 k 2k µS k ↵ S k !

µS k ↵ S k 2! 2! ↵ S k !2 �S k S k � µS k

a1 k 2k µS k ↵ S k ! S k � µS k

µS k !2 2! ↵ S k �S k 2! � S k � µS k

a0 k 2k ↵! � µS k

↵!2 � µS k

S k increases from ↵!
! � to 2↵!

2! � as k increases from 0 to . We may write p �, k
P �, k kQ �, k , where the dependence of P and Q on k comes from the fact that
S k depends on k. First let us consider the case when k 0. Then p �,0
P �,0 and the Jacobian evaluated at positive equilibrium admits an eigenvalue
! associated to the eigenvector e4. Thus, p �,0 � ! q �,0 with

q �,0 �3 µS 0 ↵ S 0 ! �2 µS 0 ↵ S 0 !

S 0 � µS 0 � S 0 � µS 0 ! � .

Letting � 0, S 0 ↵ and q �,0 �3 µ↵ ! �2 µ↵! ↵ � µ↵ � ↵! � µ↵
is Hurwitz. Thus, by continuity, for � and k small, the positive equilibrium is locally
stable. Letting � , S 0 0, �S 0 ↵! and q �,0 �3 ↵ ! �2 �↵!,
which is not Hurwitz. Thus, in the limiting case where � approaches infinity and
for k small, the positive equilibrium is unstable.

We once again let � be fixed and positive. Note

p �, k P �, k kQ �, k 0 Q �
1

k
P �, k 0.

Let U be a bounded open set which contains all the zeros of Q. Note that U may
be chosen to such that k 0 Q �, k 0 � U . Then on U we have that there

exist m,M R such that Q �, k m and P �,k
k

M
k . Then there exists K 0
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such that for all k K we have m M
k . Then by Rouché’s Theorem, Q �, k and

Q �, k 1
kP �, k have the same number of zeros in U for all k K. Since P �, k

is quartic and P �i,k
k 0 as k for �i bounded, there exists �j unbounded in

k such that p �j , k 0. Consider

1

k4
p k⌫ k ⌫4 2⌫3

1

k
l.o.t. f ⌫,

1

k
.

Then 1
k is a parameter which goes to zero as k , f 2,0 0 and f

⌫ 2 0.
Then by the Implicit Function Theorem there exists ' 0, R such that
' 0 2 and f ' 1

k , 1
k 0. Hence, �j k⌫ 2k is the unbounded root of p

and is always non-positive.
Let k , and let S limk S k 2↵!

2! � . Then, p �, has one root given
by k' 1

k and the remaining roots are the roots of Q �, with

1

2
Q �, �3 µS ↵ S ! �2 µS ↵ S ! S � µS � ↵! � µS

Letting � 0 we have S ↵ and Q �, �3 µ↵ ! �2 µ↵! ↵ �
µ↵ � ↵! � µ↵ is Hurwitz and the positive equilibrium is locally stable. Letting
� we have S 0 and Q �, �3 ↵ ! �2 �↵!, which is not Hurwitz.

Now let k 0 be finite. Letting � 0 we have p � �4 a3�
3 a2�

2 a1� a0
with

a3 2k µ↵ 2!

a2 2k µ↵! 2µ↵! !2 ↵ � µ↵

a1 2k µ↵! ↵ � µ↵ µ↵!2 2↵! � µ↵

a0 2k↵! � µ↵ ↵!2 � µ↵

each of which are positive when 4 1. Direct computation verifies that a3a2a1
a21 a23a0 0. Thus, when � 0 the positive equilibrium is stable.
Letting � we have p � �4 a3�

3 a2�
2 a1� a0 with

a3 ↵ 2 k !

a2 2↵ k ! ! 2k ! ↵!
2k !

k !
2↵ k ! ! 2k ! ↵ k ! 0

a1 �↵!
2k !

k !
a0 �↵! 2k !

Direct computation shows that a3a2a1 a21 a23a0

↵2 4k2 ! 2k ! 2!
↵ ↵ �

k ! 2

↵

k !
.

Thus, if the hypotheses hold, p � is not Hurwitz and the equilibrium is unstable.

In the comments preceding Proposition 5 we noted that 0
4 is decreasing in k.

Therefor, as k decreases, it has a stabilizing e↵ect on DFE4. In the following result,
we define parameters �1 and �2 as a function of other parameters and partition
the �1,�2 plane to determine how increasing k a↵ects the stability of the disease
free equilibrium of the full system (2), E0.

Proposition 12. Let �1
�F

µF
↵ and �2

�W

µW
↵. Then,
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i) If �1,�2 R1, the region of the �1,�2-plane bounded �1
��F

!µF
, �2

��W

!µW
and the lower branch of the hyperbola 1 ��F

2!µF�1

��W

2!µW�2
, then

the stability of the disease free equilibrium changes from unstable to stable as

k .

ii) If �1,�2 , R2, the region of the �1,�2-plane bounded �1
��F

!µF
, �2

��W

!µW
and the upper branch of the hyperbola 1 ��F

2!µF�1

��W

2!µW�2
, then

the disease free equilibrium remains unstable, but the nature of the stability

changes.

Proof. The Jacobian of system 2 evaluated at the E0 is

JE0

�F
�F

µF

�F

µF
0 0 0

0 �F

µF
↵ �F

µF
0 0 0

0 � k ! 0 0 k
0 0 0 �W

�W

µW

�W

µW

0 0 0 0 �W

µW
↵ �W

µW

0 0 k 0 � k !

Then �F and �W are eigenvalues and the remaining eigenvalues are the eigenva-
lues of the lower dimensional Jacobian

J

�1
�F

µF
0 0

� k ! 0 k
0 0 �2

�W

µW

0 k � k !

where �1
�F

µF
↵ and �2

�W

µW
↵. Then,

J 2�1�2! �1�
�W
µW

�2�
�F
µF

k !�1 �
�F
µF

!�2 �
�W
µW

is a linear function of k. Since the constant coe�cient corresponds to the product
of the eigenvalues of the uncoupled system, it follows from Proposition 3 that the
lines �1

��F

!µF
and �2

��W

!µW
split the �1,�2-plane into 4 quadrants with E0

stable in QIII, E0 having one positive eigenvalue in QII and QIV and two positive
eigenvalues in QI where the labeling I, II, III, IV is done counterclockwise with
QI �1,�2 �1

��W

!µW
,�2

��W

!µW
.

Furthermore, analyzing the null set of the coe�cient of k in J yields the hy-
perbola given by

1
��F

2!µF�1

��W
2!µW�2

where 2�1�2! �1�
�W

µW
�2�

�F

µF
0 between the branches and positive outside

them. Thus, the determinant changes sign as k in R1 and R2. First we
consider R1.

Let k
�1! � �F

µF
�2! � �W

µW

2�1�2! �1�
�W

µW
�2�

�F

µF

, the critical value of k for which J 0.

Consider the characteristic polynomial of J given by

p �, k �4 a3�
3 a2�

2 a1� a0
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where a1 a1 k 2�1�2 2! �1 �2 � �F

µF

�W

µW
k �1 �2!

�W

µW
�2 �1!

� �F

µF
! �1! � �F

µF
�2! � �W

µW
and a0 k J . Then,

p

k
0, k 2�1�2! �1�

�W
µW

�2�
�F
µF

0 in R1

Let e �1! � �F

µF
and f �2! � �W

µW
.

2�1�2 e f �1! �2! ef �1f �2e
2 ! �1f �2e e f

2�1�2 e f �1! �2! ef �2
1f

2 2�1�2ef

�2
2e

2 ! �1f
2 �2e

2 ! �1 �2 ef

�2
2 �2! f e2 �2

1 �1! e f2

�2
2 �2! �2! �

�W
µW

e2 �2
1 �1! �1! �

�F
µF

f2

�2
2 �

�W
µW

e2 �2
1 �

�F
µF

f2 0

Thus, a1 k 0 for any �1,�2 which implies that
p

�
0, k 0. Hence,

�

k
0

for �1,�2 R1 and the change of sign as k indicates that the principle
eigenvalue becomes negative, proving i .

In R2, J Ak B where A 0 and B 0 changes sign as k . Then
p

k
0, k A 0. Since

p

�
0, we have that

�

k
0 and the sign change

indicates that an additional eigenvalue becomes positive. Since J has two negative
eigenvalues and two positive eigenvalues for k 0 as indicated by Proposition 3,
there is no change of stability.

Theorem 5.2. Suppose that there exists a Hopf periodic orbit, � in the patch i
dominated 4-dimensional subsystem (4). Let �j Vj. Then there exists " 0 such

that if �j �j ", then Ei is an attractor with respect to the interior of R6
while �

is a repeller with respect to the interior of R6
.

� ��1
2!µ1

� ��2
2!µ2

� ��1
!µ1

� ��2
!µ2

+ –

R2
– +

– +
R2

+ +

R1

R1

�1

�2

The �1-�2 plane

1

Figure 4. The set detJE0 0 in the �1,�2–plane.
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Proof. We have that Si
↵! 2k !

! 2k ! � k ! and Q �k
! 2k ! � k ! . From system (4),

after taking averages we have,
.

Si Si �i µiSi Ii Vi
.

Ii Ii Si ↵ ViSi
.

Vi k Vj Vi ! Vi � Ii
.

Vj k Vi Vj ! Vj .

(12)

From
.
Vj 0 we have that

Vi
k !

k
Vj . (13)

Since
.
Vi 0, substituting (13) into the expression for

.
Vi and solving for Ii

yields,

Ii
! 2k !

�k
Vj . (14)

Note that
.
Si 0 implies that

.
Si

Si
0, thus, �i µi Si Ii Vi 0. That is

�i µi Si Ii Vi .

Substituting (13) and (14) after simplification yields,

�i µi Si
1

Q
Vj . (15)

Now,
.
Si

.
Ii

.
Si

.
Ii Si �i µiSi ↵ Ii 0. After substituting (14) and

applying Jensen’s Inequality, we have

Si �i µi Si
↵! 2k !

�k
Vj .

By substituting (15) we have that 1
Q Si Vj

↵! 2k !
�k Vj , which simplifies to

Si Si. (16)

Finally, applying (16) to (15) we have that Vj Q �i µi Si Q �i µiSi Vj ,
or simply put

Vj Vj . (17)

Letting " Vj Vj

2 0 completes the proof.

Let � refer to the Hopf orbit contained in the invariant boundary set Sj Ij 0
as above.

Theorem 5.3. Suppose that � exists as in the previous theorem. Then as �j is

increased through the value �j Vj , � bifurcates into a periodic orbit in the first

octant.

Proof. It su�ces to consider a branch of solutions F Sj , Ij ;�j with

D Sj ,Ij F
1 e⌧0 �j Vj 0

P1

Sj
0,0;�j 1 e ↵⌧0 .

When �j �j , D Sj ,Ij F becomes

D Sj ,Ij F
0 0

P1

Sj
0,0;�j 1 e ↵⌧0 ,
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which has one dimensional null space spanned by

u
1 e ↵⌧0

P1

Sj
0,0;�j

,1
T
.

Since the column space of D Sj ,Ij F 0,0;�j has dimension 1, the condition

D Sj ,Ij ,�j
F 0,0;�j u Range D Sj ,Ij F 0,0;�j

follows from the fact that the left hand side is of the form ⌧0,0
T while

D Sj ,Ij F 0,0;�j
x
y

0
1 e ↵⌧0 y P1

Sj
0,0;�j x .

Thus, there exists a branch of solutions

Sj

Ij
⇢u o ⇢

�j �j ⇢�j o ⇢

where ⇢ is a scalar. Note that v 1,0 is a left eigenvector for the eigenvalue 0.
Then

vD Sj ,Ij ,�j
F 0,0;�j u ⌧0 0

implies that this branch of solutions represents a periodic solution which move into
the interior of the positive orthant.

6. Discussion. We have shown that this relatively simple system exhibits very rich
dynamics. The 4–dimensional subsystem (4) is a perturbation of the 3–dimensional
subsystem (3) in that the disease free equilibrium, positive equilibrium and peri-
odic orbit of the 4–dimensional subsystem are all shown to be continuations of their
3–dimensional counterparts. This is not surprising when we consider the biological
setting each subsystem represents. The 3–dimensional subsystem represents one
patch inhabited by one susceptible fish population while the 4–dimensional sub-
system represents two patches inhabitable by the virus but only one containing a
susceptible fish population. We have shown that this second patch acts as a sink for
the virus and that 0

4 is a decreasing function of the di↵usion rate which couples the
patch containing fish with the sink patch. Under the right conditions, it is possible
for the virus to persist in one uncoupled patch, but to go extinct when that patch
is coupled strongly to a patch with no susceptible inhabitants. This indicates that,
in certain cases, partitioning the habitat may serve as protection against infection.

We have stated 0
4 is a decreasing function of k. Thus, increasing di↵usion

can reduce risk of infection, but we need a practical way to implement this as a
strategy in a real farm. Consider the mean residence time in a patch, given by
1
k . Then increasing the rate of di↵usion is akin to decreasing mean residence time.
Furthermore, mean residence time is positively correlated with patch size. Therefor,
these results indicate that reducing patch size would decrease the ability of the virus
to invade. Of course, reducing patch size also reduces the number of fish per patch,
so there is a trade-o↵ for implementing this as a strategy. In this work we have
assumed, as a simplification, that farm and wild patches are of equal size. We
recognize that this is not the case and suggest that we can discard this assumption
by allowing for di↵ering rates of di↵usion between patches.

We also saw in Figure 3.4, Region II the positive coexistence equilibrium EFW

exists even when the single species equilibria EF and EW do not. This is a striking
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result as illustrated by the following example. Suppose that a Salmon farm is
constructed in a wild Salmon migratory route. Suppose that, initially, there are no
fish in either the farm or wild patches. During the course of migration, fish enter
the wild patch, but 0

W 1 and the virus cannot invade. Suppose that the fish
leave the wild patch and that the farm is populated with fish. Then 0

F 1 and the
virus does not invade. However, when fish return to the wild patch, 0

FW 1 and
the virus invades in both patches. This is not always possible, though. Indeed, if
the virus cannot invade either patch in absence of di↵usion (3–dimensional, 1–patch
system (3)), then 0

FW 1 and the virus cannot invade for any rate of di↵usion.
One of the most interesting features of the dynamics of this systems is more

interesting mathematically than biologically. It was noted that the 4–dimensional
boundary equilibrium exchanges stability with the unique equilibrium which enters
the interior of R6 and becomes EFW . It was shown that, when the Hopf orbit exists
in the boundary, it exchanges stability with a periodic orbit that enters the interior
of R6 . The interesting feature, stated in Theorem 5.2 is that the periodic solution
bifurcates into the interior before the positive equilibrium does. That is, there is a
parameter regime in which the system admits a positive periodic solution, but no
positive equilibrium.
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