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ABSTRACT
In epidemic modelling, the emergence of a disease is characterized
by the low numbers of infectious individuals. Environmental ran-
domness impacts outcomes such as the outbreak or extinction of
the disease in this case. This randomness can be accounted for by
modelling the system as a continuous time Markov chain, X(t). The
probability of extinction given some initial state is the probability of
hitting a subset of the state space associated with extinction for the
initial state. This hitting probability can be studied by passing to the
discrete time Markov chain (DTMC), Xn. An approach is presented to
approximate a DTMC on a countably infinite state space by a DTMC
on a finite state space for the purpose of solving general hitting
problems. This approach is applied to approximate the probability of
disease extinction in an epidemicmodel. It is also applied to evaluate
a heterogeneous disease control strategy in a metapopulation.
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1. Introduction

Earlymathematical models of disease considered infection in a single population compart-
mentalized into susceptible and infectious classes [34,44]. Such models continue to be of
interest to researchers to this day [2,10,13,24,32,36,37]. In recent years, increases in mobil-
ity, or the processes by which individuals change their location, has motivated researchers
to adapt models to consider the spatio-temporal spread of disease [7]. One technique to
capture spatial heterogeneity is calledmetapopulationmodelling [6,8,31]. In these models,
the population is broken down into subpopulations called patches. Individuals experience
patch-specific local interactions as well as migration between patches. Patches are often
considered to be separate spatial locations [8]. Deterministic metapopulation models of
the spread of infectious disease are often concerned with the asymptotic behaviour of solu-
tions in a neighbourhood of the disease-free equilibrium and those in a neighbourhood of
an endemic equilibrium [4,5,8,9,27]. Another important topic for analysis is the question
of persistence or extinction of the disease. In deterministic models, the basic reproduc-
tion number [19,45] is often used to formulate a sharp threshold for the persistence of the
disease [18,23,28,39,47].
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When considering the case of the emergence or reemergence of the disease, it becomes
necessary to account for the effects of random fluctuations on the dynamics of the sys-
tem. One technique to account for this stochasticity is to formulate a continuous time
Markov chain (CTMC) model. In this setting, random fluctuations will always ultimately
lead to the extinction of the disease. Keeling describes a stochastic population as persistent
if extinction events are rare [31]. This can be measured by calculating the mean extinction
time and comparing it to ecological time scales [30–32] or by calculating the probability
of extinction. The probability of extinction is often impossible to calculate directly from
the Markov chain, but it can sometimes be approximated by the extinction of a branching
process [3,12,37,38]. In the case of a single infectious type, a branching processmodel takes
the form of the classical Galton-Watson branching process (GWbp) [3,48,51]. In the case
of multiple infectious types, the branching process takes the form of a multitype branching
process [3,26,37,38].Whether there is a single infectious type ormultiple, we will generally
refer to approximation via branching process techniques as the branching process approxi-
mation. However, the branching process approximation is not appropriate in all cases [38].
In any case, the probability of extinction is the probability of hitting the subset of the state
space associated with the extinction of the disease.

CTMCmodels of biological processes typically assume that the time until the next tran-
sition is exponentially distributed. In this case, the hitting problem can be studied by first
passing to the embedded discrete timeMarkov chain (DTMC). In this article, we present an
approach to approximate the general hitting problem in a discrete timeMarkov chain called
local approximation in time and space (LATS). We prove that the hitting probability cal-
culated using LATS converges asymptotically to the true hitting probability in Section 3.3.
We illustrate this approach via applications in Sections 4 and 5. There are ulterior motives
for the choices of applications in Sections 4 and 5. In addition to providing an example of
two ways in which the LATS technique provides an approximation of the probability of
extinction, the application in Section 4 illustrates that LATS approximation is accurate at
small population sizes (when branching process approximations fail) and that LATS pro-
vides insight into the most likely path to extinction or outbreak. In Section 5, the LATS
technique is used to calculate an atypical hitting problem, illustrating its robustness as a
method for approximating general, rather than specific hitting problems.

Stochastic Susceptible-Infected-Susceptible (SIS) models have been a topic of study dat-
ing back to the work of Bailey [11]. While some authors have modelled stochasticity using
stochastic differential equations [24], we will focus on SIS models in the form of Markov
processes. West and Thompson [50] analysed continuous and discrete time SI models and
Allen and Burgin [2] compared deterministic and stochastic SIS models. Epidemiological
models in the form of stochastic SIS models in metapopulations have been studied in var-
ious ways [5,10]. In particular, several authors have considered optimal control [13,35,36].
To illustrate the utility and robustness of the LATS technique, wewill formulate the optimal
control problem as a hitting problem and analyse it using LATS.

In contrast with branching process approximation, the LATS approach can be used to
answer any question about a stochastic metapopulation that can be posed as a hitting prob-
lem. For example, the probability of extinction in a single patch may provide important
information about a metapopulation. Since patches in a metapopulation are typically cou-
pled together by themigration of their residents, extinction in one patch is a transient event.
However, the probability of extinction in a single patch can be used as a patch-specific
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indicator of disease risk. To illustrate this, we consider a two-patch SISmodel in which dis-
ease control that reduces the rate of infection by 20% can only be deployed in a single patch.
The probability of extinction in a single patch is used to determine the optimal strategy for
deployment. We also calculate the optimal strategy using various standard techniques, for
comparison.

The article is organized as follows: we begin by recalling the necessary mathematical
preliminaries in Section 2. The LATS approach is presented in Section 3. Section 4 illus-
trates an application of LATS to calculate the probability of the extinction of the disease in
a single population where branching process techniques are not suitable. In Section 5, we
formulate an optimal control problem in a metapopulation SIS model as a hitting problem
to show that analysis via the LATS technique is perhaps more sensitive to the preferences
of decision-makers than standard techniques such as the probability of total extinction and
R0.

2. Mathematical background and preliminaries

The LATS technique, which is presented in Section 3, combines basic results from the the-
ory of Markov chains, including collapsed Markov chains, and graph theory to formulate
an approximation of a given CTMC. For applications to epidemic models, we will typically
be concerned with CTMCs which have exponentially distributed waiting times. However,
LATS can be applied more generally. In this section, we first recall existing definitions and
results pertinent to the development of LATS. Amore thorough introduction to the theory
of Markov chains can be found in [1,20,22,29,33,40,41].

2.1. EmbeddedMarkov chain

Let (Xt)t≥0 be a homogeneous CTMC on a countable state space S. We ignore the special
case of an explosive process [1,40]. Let (Wi)i∈N be the collection of random jump times
such that Xt jumps to a new state at each time Wi and remains in the state XWi for Wi ≤
t < Wi+1. The random variables Ti = Wi+1 − Wi represent the random amount of time
Xt spends in state XWi for each i and are called interevent times. The CTMC Xt can be
characterized by its transition probabilities

pij(�t) = P(Xt+�t = j|Xt = i)

for transition from state i to state j in S. The collection of all transition probabilities can
be written as a (possibly infinite) matrix P(t) = (pij(t)). If i �= j, then pij(0) = 0, otherwise
pii(0) = 1. For i �= j, define

qij = lim
�t→0+

pij(�t) − pij(0)
�t

= lim
�t→0+

pij(�t)
�t

.

Let qii = −∑
j�=i∈S qij and define the generator matrix Q = (qij). Let qi = −qii =∑

j�=i∈S qij be the off diagonal ith row sum ofQ. The CTMC Xt admits a DTMC Yn, known
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as the embedded Markov chain. Yn has the property that

Yn = XWn , ,= 0, 1 , 2, . . . .

Define

tii =
{
0, if qii �= 0
1, if qii = 0,

(1)

and for j �= i

tij =
{ qij

qi , if qij �= 0
0, if qij = 0.

(2)

Then the matrix T = (tij) is the probability transition matrix of the embedded DTMC Yn.
It is equivalent to say that Yn is formed by conditioning Xt on the fact that a transition has
taken place and replacing the index of time with the index of the number of transitions.
Since we restrict our discussion to homogeneous CTMCs on a countable state space, any
CTMC we consider admits an embedded DTMC. The notation Yn and T to denote the
embedded CTMC and its probability transition matrix can be found in [1] and is used to
differentiate between the CTMC and its embedded chain, but is not the standard notation
for aDTMC. For the discussions that followwe adopt the followingmore standard notation
for DTMCs.

LetXn be a homogeneous discrete timeMarkov chain on a countable state space S. Let P
be the probability transition matrix associated with Xn. For i, j ∈ S the one-step transition
probability from i to j is given by

pij = P(Xn+1 = j|Xn = i).

Them-step transition probability from i to j is given by

p(m)
ij = P(Xn+m = j|Xn = i).

Since Xn is a homogeneous DTMC, pij and p
(m)
ij are independent of n. Then (P)ij = pij and

(Pm)ij = p(m)
ij . If there is anm>0 such that p(m)

ij > 0, then we say that j is reachable from
i. If j is reachable from i and i is reachable from j, we say that i and j communicate. Com-
munication is an equivalence relation which partitions S into equivalence classes called
communication classes. We say a communication class C is closed if whenever i ∈ C and
j is reachable from i, then j ∈ C. A state which is in a communication class which is not
closed is called a transient state. The probability of first reaching state j from state i in with
respect to Xn is called a hitting probability. The following definitions of them-step hitting
probability and hitting probability come from Pinsky and Karlin [41], while the notation
is more similar to that of Norris [40], but modified to suit our purposes. The probability
of first hitting state j from state i in exactly m transitions with respect to Xn is an m-step
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hitting probability and given by

h(m)
(i;X)(j) = P(Xm = j|X0 = i ∩ Xk �= j∀k = 1, . . . ,m − 1). (3)

The probability of first hitting j from i with respect to Xn is

h(i;X)(j) =
∞∑

m=0
h(m)

(i;X)(j) = lim
N→∞

N∑
m=0

h(m)
(i;X)(j). (4)

2.2. Graph theory

We now recall a few notions from graph theory [14,15,49]. A graph G is a set of vertices
V(G) together with a set of edges E(G). The graph G is called a directed graph or a di-
graph if E(G) is a set of ordered pairs such that (u, v) ∈ E(G) whenever there is a directed
edge from vertices u to v. We say that u is the tail and v is the head of edge (u, v). The
out-degree of a vertex v is the number of edges with tail v. The out-degree of the graph G
is the supremum of the out-degrees taken over all the vertices. For our purposes, we will
consider the case that V(G) is a countable set. In this case, V(G) can be enumerated as a
sequence (vi) for i = 1, 2, 3, . . .. Define the (possibly infinite) matrix A = (aij) with entry
aij = 1 if (vi, vj) ∈ E(G) and aij = 0 otherwise. ThematrixA is called the adjacencymatrix
of the graphG. Clearly, A encodes the edge set E(G). If the vertex set V(G) is understood,
then A defines the graph G. A u,v-path of length k is a sequence vi0 , e1, vi1 , e2, . . . , ek, vik
where vi0 = u, vik = v and ej = (vij−1 , vij) for j = 1, 2, . . . , k. The graph distance between
vertices u and v, denoted d(u, v), is defined as the length of the shortest u,v-path. We take
the convention that d(u, v) = 0 if u= v and d(u, v) = ∞ if there is no path from u to v.
Since G is a directed graph, the graph distance is typically a quasi-metric (i.e. it meets all
the conditions of a metric except symmetry). The ball of radius r in the graph G centred
at the vertex v, denoted B(v, r), is the subset of vertices u such that d(v, u) ≤ r.

Let us return our attention to the DTMC Xn on the countable state space S with prob-
ability transition matrix P = (pij). Let A be the adjacency matrix induced by P such
that

(A)ij = aij =
{
1 if pij > 0,
0 if pij = 0.

(5)

In this way, Xn induces a di-graph, G, with states in the state space S as vertices. By the
definition of A given in (5), if there is a positive probability of transitioning from i to j in
Xn, then there is an edge (i, j) in G. Therefore, if p(m)

ij > 0, then there is a, i,j-path in G
of lengthm. It follows that the distance in the induced graph is given by d(i, j) = inf{m ≥
0|p(m)

ij > 0}. In addition, the ball of radius r in the induced graph centred at i is B(i, r) =
{j|p(m)

ij > 0 for somem ≤ r}.

2.3. Finite absorbingMarkov chains

Now let Xn be a homogeneous DTMC on a finite state space S with the properties that
there is at least one closed communication class, there is at least one communication class
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which is not closed and that all closed communication classes are singletons. This makes
Xn an absorbingMarkov chain. The closed communication classes of an absorbingMarkov
chain are called absorbing states. A more complete discussion of finite absorbing Markov
chains can be found in Chapter 3 of [33]. Let P be the probability transition matrix of Xn.
Suppose that |S| = m and S contains j<m absorbing states. By simultaneously exchanging
rows and columns of P, we can put it in its canonical form

P =
[

I 0
C D

]
, (6)

where I is the j × j-identity matrix and D is the substochastic m − j × m − j matrix. The
matrix (I − D)−1 is called the fundamental matrix of Xn.

Theorem 2.1 ([33]): Let Xn be a homogeneous DTMC on the state space S with |S| = m.
Let the probability transition matrix of Xn be given by (6). Then

lim
n→∞ Pn =

[
I 0
H 0

]
,

where H = (I − D)−1C. Furthermore, for i = j + 1, . . . ,m and k = 1, . . . , j, the entry, Hik,
associated with i and k is the probability of hitting the absorbing state sk from the transient
state si, h(si;X)(sk).

2.4. Collapsed chains

We now return to our discussion of the homogeneous DTMC Xn on the countable state
space S with probability transition matrix P. Following Hachigian [25], consider the col-
lapsed process Yn = f (Xn) where f is a many-to-one function on S onto the state space of
Yn. Suppose that the states of Yn are denoted by the countable sequence (Sα)α∈I . For each
α in the index set I, we say that the subset of states i of S given by f−1(Sα) are collapsed into
the single state Sα of the processYn. It is not generally the case that the processYn possesses
the Markov property. It is natural to ask under what conditions the process resulting from
collapsing a Markov process is again Markov. Several researchers have made contributions
to this field [16,17,25,42,43]. The following result gives a sufficient condition in the case
Xn is a finite state space Markov chain. The result is given for non-homogeneous chains.

Theorem 2.2 ([17]): Let Xn, n ≥ 0, be a non-homogeneous Markov chain with any given
initial distribution vector p and the state space S = {1, 2, . . . ,m}. Let 1 ≤ r ≤ m, and
S1, S2, . . . , Sr be r pairwise disjoint subsets of S = ⋃r

i=1 Si. Let Yn, n ≥ 0, be the collapsed
chain defined by Yn = i if and only if Xn ∈ Si. Then a sufficient condition for Yn to beMarkov
is that

P(Xn ∈ Sj|Xn−1 = k)

is independent of k in Si for 1 ≤ i ≤ r, 1 ≤ j ≤ r, i �= j, n ≥ 2.
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3. Local approximation in time and space

In this section, we present a technique called LATS for studying certain features of homo-
geneous DTMCs or homogeneous CTMCs by first passing to the embedded DTMC. As
such, the details will be presented in terms of a DTMC Xn on a countable state space S
with probability transition matrix P. In broad strokes, LATS consists of first restricting to a
subset of the state space S, modifying this subset to form a state space S so that Xn induces
a DTMC Zn on S . We will show that Zn faithfully approximates Xn locally in time and
space. We then collapse Zn on S to an absorbing DTMC Yn on the collapsed state space
S . Analysis of the collapsed chain Yn is more straightforward and less computationally
expensive.

3.1. Neighbourhood of a set of states

The first step in the LATS technique is to form a subset of a set the state space S. Let T ⊂ S.
For anym ≥ 0 define p(m)

Tj := ∑
i∈T p

(m)
ij .

Definition 3.1: Let Xn be a homogeneous DTMC on a countable state space S. Let T ⊂ S
and N ∈ N. The N-neighbourhood of the set T with respect to Xn is defined as

NN(T) = {s ∈ S : ∃m ≤ N such that p(m)
Ts > 0} =

⋃
s∈T

B(s,N), (7)

where B(s,N) is the ball of radiusN centred at s in the graphG induced by Xn as described
in Section 2.2.

Note thatN0(T) = T, since p(0)
ii = 1 by convention. Let RN(T) be the submatrix of the

probability transition matrix P associated with the states inNN(T). If T is a proper subset
of S, then R is typically a substochastic matrix. In order to extend RN to a stochastic matrix,
wemust extend theN-neighbourhood by adding an additional absorbing state. Let δi(j) be
the Dirac delta function with δi(j) = 1 when i= j and zero otherwise.

Definition 3.2: By the state space associated with NN(T), we mean SN(T) = NN(T) ∪
{g}, where g is a new state associated with escape fromNN(T). Define the transitionmatrix
QN(T) on SN(T) by

QN(T) :=

⎧⎪⎨
⎪⎩
qij = pij for i, j ∈ NN(T)

qig = 1 − ∑
j∈NN(T) pij for i ∈ NN(T)

qgi = δg(i).
(8)

QN(T) is a stochastic matrix which can be written

QN(T) =

⎡
⎢⎢⎢⎢⎣

...
RN(T) qig

...
· · · 0 · · · 1

⎤
⎥⎥⎥⎥⎦ . (9)
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Since QN(T) is stochastic, it induces a DTMC, Zn, on the state space SN(T). If the out-
degree of the graph and the set of initial states T are both finite, then the state space SN(T)

is finite. The next result shows that for any initial distribution supported on states in T, Zn
approximates Xn locally in time.

Theorem 3.1: Let P = (pij) be the probability transition matrix of the DTMC Xn on the
countable state space S, let T ⊂ S and N ≥ 1. Suppose that NN(T) and QN(T) = (qij) are
as defined in (7) and (8) above. For x ∈ T,∑

i∈NN(T)

q(m)
xi =

∑
i∈S

p(m)
xi =

∑
i∈NN(T)

p(m)
xi = 1

for all m ≤ N.

Proof: Let m ≤ N. By definition, for i ∈ S, p(m)
xi = P(Xm = i|X0 = x). By the Chap-

man–Kolmogorov equation, for 0 ≤ n ≤ m

p(m)
xi =

∑
k∈S

p(n)
xk p

(m−n)
ki =

∑
k1,...,km−1∈S

pxk1pk1k2 . . . pkm−1i.

Suppose that k1, . . . , km−1 are states in S such that pxk1pk1k2 . . . pkm−1i > 0. Then
(x, e1, k1, . . . , km−1, em, i) is a path of length m from x to i in the induced graph
G. By definition, k1, k2, . . . , km−1, i ∈ NN(T). It follows that pxk1pk1k2 . . . pkm−1i =
qxk1qk1k2 . . . qkm−1i. Therefore,

p(m)
xi =

∑
k1,...,km−1∈S

pxk1pk1k2 . . . pkm−1i =
∑

k1,...,km−1∈NN(T)

pxk1pk1k2 . . . pkm−1i

=
∑

k1,...,km−1∈NN(T)

qxk1qk1k2 . . . qkm−1j = q(m)
xi . �

Letπ be any initial distribution on S. Let supp (π) be the support ofπ . If supp (π) ⊂ T,
then there is a distribution on S , say ∼

π , which is supported on supp (π) and equal to
π there. Theorem 3.1 shows that the evolution of the distribution π in the chain Xn is
completely captured by the evolution of the distribution

∼
π in the chain Zn for the first N

transitions.

3.2. Collapsing Zn

The definition of SN(T) is related to the graphG induced by the underlyingMarkov chain
Xn by (7). If the set of initial states T and the out-degree ofG are both finite, then SN(T) is
finite for each N. Nevertheless, |SN(T)| may be quite large, making a direct analysis of Zn
difficult. In order to reduce the complexity of the mathematical analysis of Zn, as well as
the computational expense for calculations, the next step is to collapse Zn to an absorbing
DTMC Yn. As noted in Section 2.4, Yn = f (Zn) is a collapsed chain for any many-to-one
function f from the state space of Zn to the state space of Yn. However, not all collapsed
chains are themselves Markov. We recalled the definition of a closed communication class
above. Now we make a more general definition of a closed subset of the state space.



JOURNAL OF BIOLOGICAL DYNAMICS 9

Definition 3.3: Let Xn be a homogeneous DTMC on the finite state space S and let C ⊂ S.
We say that C is closed with respect to communication if, whenever i ∈ C and j ∈ S \ C,
then pij = 0.

As noted above, we seek a function f so that Yn = f (Zn) is an absorbing Markov chain.
Absorbing states in a collapsed chain are either the result of the identity map on an absorb-
ing state in the original chain or they are the result of collapsing a subset of the state space
which is closedwith respect to communication. Theorem3.2 shows that collapsing a closed
set results in a Markov chain.

Theorem 3.2: Let Xn be a homogeneous DTMC on a countable state space S. Let C ⊂ S be
a proper subset of the state space which is closed with respect to communication. Let f be a
many-to-one function given by

f (s) =
{
s if s ∈ S \ C,
c if s ∈ C.

Then Yn = f (Xn) is a Markov chain.

Proof: Let x ∈ S \ C and y ∈ C. Since C is closed with respect to communication, for all
m ≥ 0 P(Xm = x|X0 = y) = 0 and P(Xm ∈ C|X0 = y) = 1. Therefore, the closed set C
is mapped to an absorbing state c. Let x0, . . . , xm−1, xm ∈ S \ C. Then P(Ym = xm|Y0 =
x0, . . . ,Ym−1 = xm−1) = P(Ym = xm|Ym−1 = xm−1) is inherited from Xn. Furthermore,

P(Ym = c|Y0 = x0, . . . ,Ym−1 = xm−1) =
∑
s∈C

P(Xm = s|X0 = x0, . . . ,Xm−1 = xm−1)

=
∑
s∈C

P(Xm = s|Xm−1 = xm−1) = P(Xm ∈ C|Xm−1

= xm−1) = P(Ym = c|Ym−1 = xm−1).

Now let y ∈ S \ C ∪ {c}. Consider
P(Ym = y|Y0 = x0, . . . ,Ym−2 = xm−2,Ym−1 = c). (10)

Since Ym−1 = c, there exists s ∈ C such that Xm−1 = s. Then

(10) =
{
P(Xm = y|X0 = x0, . . . ,Xm−2 = xm−2,Xm−1 = s) y ∈ S \ C
P(Xm ∈ C|X0 = x0, . . . ,Xm−2 = xm−2,Xm−1 = s) y = c

=
{
P(Xm = y|Xm−1 = s) y ∈ S \ C∑

r∈C P(Xm = r|Xm−1 = s) y = c

= δc(y)

= P(Ym = y|Ym−1 = c).
�

To form the state space SN(T) of the chain Zn, we eliminated the complement of theN-
neighbourhoodNN(T) in the state space S and replaced it with an absorbing state g. In light
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of Theorem 3.2, we see that the escape state g can be formed, for example, by making all
states in the complement ofNN(T) absorbing and collapsing the resulting closed (possibly
infinite) set.

Corollary 3.3: Let Xn be a homogeneous DTMC on a countable state space S. Suppose that
S = A ∪ ⋃∞

i=1 Si is a decomposition of S into the union of disjoint sets A, S1, S2, . . . , where Si
is closed with respect to communication for all i ≥ 1. Let f be a many-to-one map such that
f (Si) = i for all i ≥ 1 and f |A is the identity. Then Yn = f (Xn) has the Markov property. If
x ∈ A and i ≥ 1, then

h(x;X)(Si) = h(x;Y)(i),

where h(x;X)(Si) and h(x;Y)(i) are hitting probabilities as in (4).

To approximate the behaviour of a homogeneous DTMC near a set of initial states T ⊂
S, we first form theDTMC Zn on a local state spaceSN(T) either by adjoining an absorbing
state to theN-neighbourhood,NN(T), described by (7) or by making the contrivance that
S \ NN(T) is closed with respect to communication and collapsing it. Theorem 3.1 shows
thatZn approximates the behaviour ofXn forN transitions on the condition thatX0 = Z0 ∈
T. If we are not concerned with the behaviour of Xn once it enters a closed communication
class, we may further simplify the approximation by forming the collapsed chain Yn =
f (Zn), where f identifies closed communication classes with absorbing states and f is the
identity map on transient states. In the next section, we show how LATS can be used to
answer the question: what is the probability of first hitting a particular subset of the state
space from a particular state in the chain Xn?

3.3. LATS approximation of hitting probabilities

Let Xn be a homogeneous DTMC on a countable state space S. In this section, we describe
how LATS can be used to approximate the general hitting problem with respect to Xn.
By the general hitting problem, we mean to determine the probability hx(V) = h(x;X)(V)

where x ∈ S andV ⊂ S. If x ∈ V ⊂ S, then hx(V) = 1 is trivial. However, it is not so trivial
if x ∈ S \ V . For example, if S is finite but very large or S is countably infinite, then the gen-
eral hitting problem can be difficult or even impossible to determine from direct analysis
of Xn.

For x, y ∈ S, the probability of first hitting y from x, given by hx(y), can be reformulated
in terms of x,y-paths in the induced graph G. By a path of lengthm which first hits y from
x in the graph G we mean an x,y-path of lengthm, as in Section 2.2, with vi0 = x, vim = y
and vik �= y for k = 1, 2, . . . ,m − 1. Let (�i(x, y))i∈Im be the family of such paths with index
set Im. For i ∈ Im, let pi be the probability of path �i. Then

h(m)
x (y) =

∑
i∈Im

pi. (11)

Equation (4) implies that
∑N

m=0 h
(m)
x (y) is a good approximation of hx(y) = h(x;X)(y) for

N sufficiently large. Since NN(x) depends on N, so does Zn and h(x;Z)(y). For m ≤ N
and i ∈ Im, the path �i is entirely contained in NN(x). In particular, y ∈ NN(x) and
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∑N
m=0 h

(m)
(x;Z)(y) = ∑N

m=0 h
(m)
(x;X)(y). It follows that h(x;Z)(y) increases to h(x;X)(y) as N

increases to infinity.
In order to describe how to use LATS to approximate the general hitting problem, we

make the following assumption.

Assumption 3.1 (A1): Suppose thatXn induces a graphGwith finite out-degree. Suppose
thatT andV are disjoint, proper subsets of S and the goal is to find the probability h(x;X)(V)

for all x ∈ T. For fixedN ∈ N, formNN(T),SN(T) andQN(T). This induces theDTMCZn
as described in Section 3.1. Since bothN and the out-degree ofG are finite, if T is finite, so
is SN(T). Now make all states in the set V ∩ SN(T) absorbing. Then V ∩ SN(T) is closed
with respect to communication. Collapse V ∩ SN(T) to a single absorbing state, which we
denote y. In addition, collapse all remaining closed communication classes of Zn. Denote
the collapsed chain Yn = f (Zn), its state spaceSN(T) and its probability transition matrix
QN(T).

Given (A1), by Corollary 3.3, Yn is Markov and h(x;Z)(V ∩ SN(T)) = h(x;Y)(y) for all
x ∈ T. Since Zn depends on N, so does Yn.

Proposition 3.4: Assume (A1) and suppose that x ∈ T such that h(x;X)(V) > 0. Then x is a
transient state in SN(T).

Proof: Since hx(V) > 0, for some v ∈ V there is a x,v-path in G. Either v ∈ V ∩ NN(T)

or v ∈ V \ NN(T). If v ∈ V ∩ SN(T), then there is an x,y-path in the graph induced by
Yn. Since there is a path from x to y, y is reachable from x. Since y is an absorbing state, the
singleton {y} is a closed communication class. Therefore, x is not reachable from y. Hence,
x is transient in Yn. If v ∈ V \ NN(T), then SN(T) can be formed by making all states
in S \ NN(T) absorbing and collapsing S \ NN(T) to the single absorbing state g. Since
V \ NN(T) ⊂ S \ NN(T), there is a path from x to g in the graph induced by Yn. The rest
of the proof follows the arguments of the previous case. �

Theorem 3.5: Assume (A1). For x ∈ T, if h(x;X)(V) = 0, then h(x;Y)(y) = 0. If h(x;X)(V) >

0, then

h(x;X)(V) − h(x;Y)(y) ≤ h(x;Y)(g)

and h(x;X)(V) − h(x;Y)(y) is non-increasing as a function of N. IfNN(T) increases to S with
N, then limN→∞ h(x;Y)(g) = 0.

Proof: Let (�i)i∈Im be the collection of all paths of length m which first hit V from
x in the graph induced by Xn and let pi be the probability of �i. If all of the vertices
that comprise the path �i are elements of NN(T), we write �i ⊂ NN(T). If the ver-
tices of �i are not all contained in NN(T), we write �i �⊂ NN(T). By the Law of Total
Probability, h(x;X)(V) = ∑∞

m=1
∑

i∈Im(pi|�i ⊂ NN(T)) + ∑∞
m=1

∑
i∈Im(pi|�i �⊂ NN(T)).

By construction,
∑∞

m=1
∑

i∈Im(pi|�i ⊂ NN(T)) = h(y;Y)(t). In the case �i �⊂ NN(T), there
is a vertex of �i which is an element of S \ NN(T). Then �i �⊂ NN(T) corresponds to an
x,g-path in the collapsed chain Yn. Therefore,

∑∞
m=1

∑
i∈Im(pi|�i �⊂ NN(T)) ≤ h(g;Y)(t).

It follows that h(x;X)(V) − h(x;Y)(y) ≤ h(x;Y)(g). Since NN(T) is non-decreasing in N,
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∑∞
m=1

∑
i∈Im(pi|�i ⊂ NN(T)) = h(x;Y)(y) is non-decreasing. The final claim follows from

the fact that if limN→∞ NN(T) = S. �

Theorem 3.5 proves that h(x;Y)(y) approximates h(x;X)(V) and h(x;Y)(g) is an upper
bound on the error of the approximation. To show that error goes to zero requires the
additional assumption thatNN(T) increase to S as N increases to infinity. This seems like
a very strong assumption. However, biological phenomena are typically modelled by gen-
eralized birth–death processes, which satisfy this assumption. In these and other cases for
which the assumption holds, the proof only shows that the error goes to zero asymptoti-
cally. However, we will see that in applications the approximation can be very accurate for
N<30.

Corollary 3.6: Assume (A1). For x ∈ T and m ≤ N

h(m)
(x;X)(V) = h(m)

(x;Y)(y). (12)

Proof: Let (�i)i∈Ik be the collection of all paths of length k which first hit V from x in the
graph induced by Xn. Let pi be the probability of path �i. Ifm ≤ N, then

h(m)
(x;X)(V) =

m∑
k=1

∑
i∈Ik

(pi|�i ⊂ NN(T)) = h(m)
(x;Y)(y). (13)

�

Theorem 3.7: Assume (A1). For fixed N ∈ N, if |T| < ∞, then Yn is a finite absorb-
ing Markov chain with probability transition matrix QN(T) with canonical form (6).
Furthermore, for m ≤ N and x ∈ T,

m∑
k=1

h(k)
(x;X)(V) = (

Qm
N (T)

)
xy ,

where (Qm
N (T))xy is the entry in the row associated with x and column associated with y

in the mth power of the probability transition matrix QN(T). Furthermore, h(x;Y)(y) is the
entry in the row associated with x and column associated with y of H = (I − D)−1C as in
Theorem 2.1.

Proof: By (A1), the out-degree of the graph G, induced by Xn, is finite. Let d ∈ N be the
out-degree of G. It follows that |SN(T)| ≤ |T|(dN + 1). Since |SN(T)| ≤ |SN(T)|, Yn is
a finite Markov chain. The result of collapsing a set which is closed with respect to com-
munication is an absorbing state. By construction, Yn consists entirely of absorbing states
and transient states and is therefore an absorbing Markov chain. That h(x;Y)(y) is the entry
in the row associated with x and column associated with y of H = (I − D)−1C is a direct
application of Theorem 2.1 to the finite absorbing Markov chain Yn. From Corollary 3.6
h(m)

(x;X)(V) = h(m)
(x;Y)(y), form ≤ N. Since y is an absorbing state,

m∑
k=1

h(k)
(x;Y)(y) = (

Qm
N (T)

)
xy .

�
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This is a powerful result for practical applications. Since I−D is a nonsingular M -
matrix, to find a hitting probability using the LATSmethod we can use either ofQn

N(T) for
sufficiently large n or (I − D)−1C. We will exhibit the practicality of this technique and the
nature of the convergence for a particular DTMC by way of example in the next section.

4. LATS vs. branching process techniques

Infectious Salmon Anemia virus (ISAv) causes Infectious Salmon Anemia (ISA) in a vari-
ety of finfish including Atlantic salmon (Salmo salar). ISA causes high mortality [21] and
affects all major salmon producing countries [46]. It is an important disease to the salmon
culture industry which has caused significant economic losses according to the Global
Aquaculture Alliance. Deterministic models of an ISAv outbreak in one and two patches
are proposed and analysed in [39]. The one-patch model is given by

.
S = S(β − μS) − S(ηI + ρV),
.
I = S(ηI + ρV) − αI,
.
V = −ωV + δI,

(14)

where S denotes susceptible fish, I denotes infected fish and V denotes free-virus in the
environment. Susceptible fish experience logistic population growth with birth and death
rates β and μ, respectively. The rates of infection due to contact with infected individu-
als and contact with free-virus are given by η and ρ, respectively. The rate of mortality of
infected fish is given by α and the rate infected fish shed virus particles into the environ-
ment is δ. Free-virus denatures and is cleared from the environment at rate ω. By scaling
the system, we may eliminate η and ρ. This yields the reduced system

.
S = S(β − μS) − S(I + V),
.
I = S(I + V) − αI,
.
V = −ωV + δI.

(15)

The state variable V in the reduced system represents the number of infectious doses of
free-virus in the environment.

The basic reproduction number is shown to be a critical parameter with the sharp
threshold R0 = 1 separating persistence of the disease (R0 > 1) and its extinction
(R0 ≤ 0). The emergence of the disease is characterized by low prevalence of the dis-
ease in the environment and few infected individuals. This setting demands the use of
stochastic modelling techniques to account for inherent random fluctuations. Continuous
time Markov chain companion models are developed and analysed in [38]. The CTMC
model of a single patch is given by Xt = (St , It ,Vt) and associated infinitesimal transition
probabilities

pij(�t) = P(Xt+�t = j|Xt = i) = σ(i, j)�t + o(t),

with transition rates σ(i, j) given in Table 1.
For deterministic epidemicmodels, it is common forR0 > 1 to be the invasion criterion

that implies persistence. In that case, the disease persists with certainty for all time. In the
caseR0 < 1, the disease goes extinct with certainty. For stochastic epidemic models, there



14 E. MILLIKEN

Table 1. State transitions and rates for the single
patch CTMC, Xt

Description Transition Rate

birth ·S S �→ S + 1 βS
death ·S S �→ S − 1 μS2

infection ·I S, I �→ S−1,I+1 S(I + V)

death ·I I �→ I − 1 αI
shed ·V I, V �→ I, V + 1 δI
clearance ·V V �→ V − 1 ωV

is always a chance that the disease will go extinct. We say that the disease persists if the
event that the disease goes extinct is rare. That is, the probability of extinction is close to
zero. The probability of extinction is the probability of hitting the subset of the state space
associated with extinction starting from an initial state in its complement. If the initial state
is near the disease-free quasistationary distribution and certain other assumptions hold,
then the probability of extinction can be approximated by a branching process [3,26,37]. In
this case,R0 is shown once again to be a critical parameter, whereR0 ≤ 1 implies almost
sure extinction and R0 > 1 implies that the probability of extinction is less than 1 [5].
The additional assumptions are that all transitions are independent and that the initial
susceptible population is sufficiently large.

Biologically speaking, assuming that all transitions are independent is a strong assump-
tion, but one that is commonly made in the formulation of mathematical models. Since
I and V are distinct types of infectious individuals, Xt is approximated using a multitype
branching process. The offspring probability generating function (pgf) for the multitype
branching process is

F(u1, u2) = (f1(u1, u2), f2(u1, u2)) =
(

α + δu1u2 + S̄u21
α + δ + S̄

,
ω + S̄u1u2

ω + S̄

)
, (16)

where S̄ = β/μ is the population size at the disease-free distribution of Xt . It is easy to
verify that F(1, 1) = (1, 1). IfR0 > 1, then there exists a unique (q1, q2) in [0, 1) × [0, 1)
such that F(q1, q2) = (q1, q2). In this case, the probability of the extinction of all infectious
types, given that there are initially i individuals of type I and j individuals of typeV, is given
by qi1q

j
2 [3,26].

The branching process approximation of Xt is a linearization and therefore doesn’t cap-
ture nonlinear behaviour ofXt . This is the reason that the branching process approximation
diverges from the Monte Carlo approximation in Figure 1. For the purpose of this illus-
tration, we assume that μ = 1,α = 3.3, δ = 1.3,ω = 4 are fixed and allow β to vary. We
assume that there is initially one individual of type I and no individuals of type V. There-
fore, the branching process probability of extinction is given by q1, which is a continuous
function of the parameters. Monte Carlo simulations are performed at 10 unit increments
of β from β = 10 to β = 50. At data point β = 10, the branching process approximation
of the probability of extinction is 0.2953, while Monte Carlo simulation gives 0.3893.

Using LATS to approximate the probability of extinction faithfully captures the
behaviour of Xt near the disease-free distribution, including any nonlinear behaviour. As
a result, the LATS approximation in Figure 1 remains accurate as β is varied. The fact that
LATS detects nonlinear behaviour is one of the benefits of this technique.
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Figure 1. The size of the susceptible population at the disease-free quasistationary distribution is given
by β/μ. β is the independent variable, while μ = 1,α = 3.3, δ = 1.3,ω = 4 are fixed. The probability
of extinction is approximated using branching process approximation (blue), numerical simulation via
Gillespie algorithm (red) and LATS (black).

Since Xt is a non-explosive process, for both branching process approximation and
LATS, we first pass to the embedded DTMC, which we denote Xn. We say an outbreak has
occurred in Xn when In + Vn ≥ Ī + V̄ , where Ī, V̄ are the numbers of infected individuals
and infectious doses of free-virus at the outbreak quasistationary distribution (equiva-
lent to the endemic equilibrium of the deterministic model (15)). We say extinction has
occurred when It + Vt = 0. In Assumption (A1), above, we consider the set of initial states
T and seek to approximate the probability of hitting a single set V. In this case, we let T
be the singleton {x0 = (S̄, 1, 0)} and define the sets O = {(S, I,V) ∈ N3|I + V ≥ Ī + V̄}
and E = {(S, I,V) ∈ N3|I + V = 0} to be the sets associated with outbreak and extinc-
tion, respectively. The sets E and O are disjoint. It is therefore possible to treat them both
as V is treated in (A1). Suppose f (E) = e and f (O) = o. The result is the collapsed state
space SN(x0), which consists of the 3 absorbing states e (associated with extinction), o
(associated with outbreak), and g (associated with escape from the neighbourhood) and
all remaining states are transient. By Theorem 3.7,

N∑
k=1

h(k)
(x0;X)(j) = (

QN
N (x0)

)
x0f (j)

, for j = E or O. (17)

Since f (E) = e and f (O) = o, by (4), it follows that the entries (QN
N (x0))x0e and

(QN
N (x0))x0o increase h(x0;X)(E) and h(x0;X)(O), respectively. By construction, there is no
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Table 2. This table illustrates the convergence of entries in the
row associated with x0 of QN

N(x0) to the hitting probabilities
h(x0;X)(E) and h(x0;X)(O).

N (QN
N)x0 e (QN

N)x0 o (QN
N)x0 g

1 0.0154 0 0
10 0.1219 0.0002 0
15 0.1625 0.0028 0
20 0.1945 0.0121 0
25 0.2205 0.0306 0
30 0.2422 0.0582 0
35 0.2609 0.0932 0
40 0.2770 0.1330 0
45 0.2911 0.1752 0
50 0.3035 0.2177 0
100 0.3678 0.5041 0
200 0.3881 0.6048 0
300 0.3892 0.6104 0
400 0.3893 0.6107 0

Notes: For eachN, e,o andg are the states inSN(T), the state spaceof the LATS
collapsed chain Yn , associated to extinction, outbreak, and escape from
the N-neighbourhood, respectively. Parameter values are β = 10,μ = 1,
α = 3.3, δ = 1.3 and ω = 4.

x0, g-path of length N in the graph induced by Yn. Therefore, (QN
N (x0))x0g = 0. Table 2

illustrates the convergence of (QN
N (x0))x0e and (QN

N (x0))x0o to h(x0;X)(E) and h(x0;X)(O),
respectively.

Theorem 3.5 shows that the LATS collapsed chain Yn approximates the probabilities of
extinction and outbreak another way, as well. That is,

h(x0;X)(j) − h(x0;Y)(f (j)) ≤ h(x0;Y)(g), for j = E or O. (18)

Since the LATS collapsed chain Yn is a finite absorbing chain, by Theorem 2.1, QN(x0)
has canonical form given by (6) and h(x0;Y)(j) = (H)x0j for j= e,o or g and where H =
(I − D)−1C. In applications, approximating hitting probabilities with respect to Xn using
the LATS collapsed chain Yn via entries of the matrixH may converge faster and with less
computational expense than approximating via the Nth power of the matrix QN(x0). This
is illustrated in Table 3.

The results in Table 3 illustrate that forN=25, the probability that realizations with the
initial state x0 in the LATS collapsed chainYn leave theN-neighbourhoodbefore hitting the
absorbing states associated with outbreak or escape is so small as to be negligible. There-
fore, the LATS approximationYn is an accurate representation of the embeddedDTMCXn
near the initial state x0 for N ≥ 25. Furthermore, in Table 3, the probability of extinction
converges faster (for smaller N) than the probability of outbreak. This means that realiza-
tions with the initial state x0 that lead to extinction are more likely to remain close to x0
than those that lead to outbreak. This is reasonable, since the initial state x0 is one transi-
tion inXn from the subspace E ⊂ S associated with extinction, as evident from the first row
of Table 2. Nevertheless, the fact that LATS approximation gives insight into the behaviour
of Xn at such fine resolution is another benefit of the technique.
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Table 3. This table illustrates the convergence of entries in
the row associatedwith x0 ofH = (I − D)−1C to the hitting
probabilities h(x0;X)(E) and h(x0;X)(O).

N (H)x0 e (H)x0 o (H)x0 g

1 0.0283 0 0.9717
10 0.3470 0.3645 0.2885
15 0.3892 0.5905 0.0202
20 0.3893 0.6102 0.0005
25 0.3893 0.6107 0
30 0.3893 0.6107 0

Notes: For each N, e, o and g are the states in SN(T), the state space
of the LATS collapsed chain Yn , associated with extinction, outbreak,
and escape from theN-neighbourhood, respectively. The probability
of escape does not actually reach 0, but does become so small as to
be negligible for the purpose of numerical calculations. Parameter
values are the same as those used in Table 2.

5. Locally deployed disease control

In this section, we consider 2 small communities coupled together by migration. This
metapopulation experiences a disease outbreak in which infected individuals become fully
susceptible immediately upon recovery. First, a deterministic SIS model in the form of a
system of nonlinear ODEs is proposed and analysed, then a related CTMC is developed.
Consider the following hypothetical: suppose that both patches are at risk of outbreak in
the sense that their patch type reproduction numbers are greater than 1, with patch 2 at
higher risk than patch 1. Suppose that patch 1 has the resources to deploy disease control
to reduce the rate of infection by 20%, but can only be deployed in one patch. We consider
the strategies of deployment in patch 1 only, or patch 2 only, and show which strategy min-
imizes the basic reproduction number for a particular choice of parameters. LATS is used
to determine the optimal strategy for control in the CTMC, taking into account outcome
preferences of decision makers.

First we consider the following deterministic two-patch SIS model:

Ṡ1 = −β1
S1I1
N1

+ γ1I1 + d(S2 − S1),

İ1 = β1
S1I1
N1

− γ1I1 + d(I2 − I1),

Ṡ2 = −β2
S2I2
N2

+ γ2I2 + d(S1 − S2),

İ1 = β2
S2I2
N2

− γ2I2 + d(I1 − I2),

(19)

where, in patch i, Si is the number of susceptible individuals, Ii is the number of infected
individuals,Ni = Si + Ii is the total number of individuals, βi is the rate of infection and γi
is the rate of recovery for i=1,2. The rate of migration between patches is d andN = N1 +
N2 is the total number of individuals in the system. This model corresponds to the model
studied in [37] with n=2, α1 = α2 = 0 and d12 = d21 = d. When I1 = I2 = 0, the system
admits the disease-free steady state S1 = S2 = N/2. Following [37], the basic reproduction
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Table 4. Patch-specific and overall reproduction numbers
for no control, control deployed in patch 1 only and control
deployed in patch 2 only.

(θ1, θ2) R01 R02 R0

(1,1) 2 5 3.4358
(0.8,1) 1.6 5 3.3146
(1,0.8) 2 4 2.8944

number is

R0 = β1(γ2 + d) + β2(γ1 + d) +
√

(β1(γ2 + d) − β2(γ2 + d))2 + 4d2β1β2

2[(γ1 + d)(γ2 + d) − d2]
. (20)

The patch type reproduction number is given byR0i = βi/γi for i=1,2 and corresponds
to the basic reproduction number in each patch in the absence of migration. Suppose that
β1 = 0.4, β2 = 0.5, γ1 = 0.2, γ2 = 0.1, and d=0.1. Then R01 = 2, R02 = 5 and R0 ≈
3.4358. Now we modify system (19) to include parameters θ1 and θ2 related to the control.
The new system is given by

Ṡ1 = −θ1β1
S1I1
N1

+ γ1I1 + d(S2 − S1),

İ1 = θ1β1
S1I1
N1

− γ1I1 + d(I2 − I1),

Ṡ2 = −θ2β2
S2I2
N2

+ γ2I2 + d(S1 − S2),

İ1 = θ2β2
S2I2
N2

− γ2I2 + d(I1 − I2),

(21)

which corresponds to system (19) when θ1 = θ2 = 1. The strategy of deploying disease
control in patch 1 corresponds to (θ1, θ2) = (0.8, 1) and the complementary strategy cor-
responds to (θ1, θ2) = (1, 0.8). The effect these strategies have on R0 and R0i for i=1,2
is found in Table 4. Clearly, the strategy of deploying control in patch 2 minimizes R0
as well as minimizing the sum of the patch-specific reproduction numbers, R01 + R02.
Regardless of which strategy is chosen,R0 > 1 and the disease persists [27].

If d=0, then the system decouples and the basic reproduction number in a single patch
is given by the patch type reproduction numberR0i = βi/γi, for i=1,2. ForNi sufficiently
large, the probability of extinction following the introduction of a single infected individual
is given by the GWbp approximation q = 1/R0i = γi/βi, a decreasing function of R0i
[3,51].

In order to investigate what happens at small population size we consider the CTMC
Xt = (S1(t), I1(t), S2(t), I2(t)) with the infinitesimal transition probabilities pij(�t) =
P(Xt+�t = j|Xt = i) = σ(i, j)�t + o(�t) and associated rates σ(i, j) found in Table 5.

Consider the two-patch SIS CTMC, Xt , with the parameters β1 = 0.4, β2 = 0.5,
γ1 = 0.2, γ2 = 0.1, d = 0 and control strategy (θ1, θ2). Since d=0 the two patches are
decoupled and Ṅi = 0 for i=1,2. Suppose there are initially 10 individuals in patch 1 and
5 individuals in patch 2. Using LATS, we determine the probability of extinction P0i in
patch i from the initial state (9, 1) in patch 1 and (4, 1) in patch 2 with and without control.
As noted above, Whittle showed that in this case the GWbp approximation of the prob-
ability of extinction in patch i is the reciprocal of the patch reproduction number [51].
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Table 5. State transitions and rates for the two-patch SIS CTMC, Xt

Description Transition Rate σ(i, j)

Infection ·S1 S1, I1 �→ S1 − 1, I1 + 1 θ1β1
S1 I1
N1

Recovery ·I1 S1, I1 �→ S1 + 1, I1 − 1 γ1I1
Infection ·S2 S2, I2 �→ S2 − 1, I2 + 1 θ2β2

S2 I2
N2

Recovery ·I2 S2, I2 �→ S2 + 1, I2 − 1 γ2I2
Migration ·S1 S1, S2 �→ S1 − 1, S2 + 1 dS1
Migration ·I1 I1, I2 �→ I1 − 1, I2 + 1 dI1
Migration ·S2 S1, S2 �→ S1 + 1, S2 − 1 dS2
Migration ·I2 I1, I2 �→ I1 + 1, I2 − 1 dI2

Table 6. Patch i reproduction numbers (R0i) and GWbp probabilities of extinction (1/R0i ) and
LATS probabilities of extinction (P0i) from the initial state (9, 1) in patch i= 1 and (4, 1) in patch
i= 2 with and without control.

(θ1, θ2) R01 R02
1

R01

1
R02

P01 P02

(1, 1) 2 5 0.5 0.2 0.5758 0.2727
(0.8, 0.8) 1.6 4 0.625 0.24 0.6325 0.3439

Note: Parameter values are given by β1 = 0.4, β2 = 0.5, γ1 = 0.2, γ2 = 0.1, d = 0.

The results of LATS approximation of the probability of extinction are reported alongside
the patch reproduction numbers and the reciprocals of the patch reproduction numbers
in Table 6. The results of the experiments reported in Table 6 coincide with the hypothesis
that the probability of extinction in a single patch is monotone inR0 for small populations
as well.

Now let d=0.1 so that the two patches form a metapopulation. Let us return to the
hypothetical that residents of patch 1 have resources available to deploy a control strat-
egy that reduces the rates of infection in a single patch. The residents of patch 1 wish to
deploy the control in the patch that yields the greatest benefit to themselves. To account
for this preference, we want to calculate the probability of extinction in patch 1 only from
the initial state x0 = (10, 1, 1, 3). This is the state of the system if patch 1 is at its single
patch quasistationary disease-free state (10, 0), patch 2 is at its single patch quasistation-
ary endemic state (1, 4) and a single infected individual migrates from endemic patch 2
to patch 1 as the rate of movement between patches, d, becomes positive. Recall that the
state space S of Xt is the subset S = {(S1, I1, S2, I2)} ⊂ N4 with the property that S1 +
I1 + S2 + I2 = S1(0) + I1(0) + S2(0) + I2(0), i.e. that the total population is preserved.
Let A = {(S1, I1, S2, I2) ∈ S : I1 = 0} be the subset of S associated with the extinction of
the disease in patch 1 only and let E = {(S1, I1, S2, I2) ∈ S : I1 = I2 = 0} be the subset of S
associatedwith total extinction of the disease. ThenE ⊂ A. Define the probability of partial
extinction in patch 1 to be the probability of hitting the setA. Since d>0, the event Xt = a
for a ∈ A \ E is transient. However, we take it as an indicator of the disease risk in patch 1.
LetXn be the embedded DTMC.We use LATS as described in (A1) withV =A to approx-
imate h(x0;X)(A) and again with V =E to approximate h(x0;X)(E). Results in Table 7 show
that strategy (θ1, θ2) = (0.8, 1), corresponding to deployment in patch 1, optimizes patch
1 partial extinction, h(A;X)(x0). In contrast, the probability of total extinction, h(E;X)(x0),
indicates deployment in patch 2 optimizes total extinction of the disease.
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Table 7. Probability of partial extinction in patch 1 only
and total extinction from initial state x0 = (10, 1, 1, 3).

(θ1, θ2) h(A;X)(x0) h(E;X)(x0)

(1,1) 0.6157 0.0623
(0.8,1) 0.7095 0.0940
(1,0.8) 0.6591 0.1077

Table 8. The probability of extinction from initial state
x1 = (7, 1, 7, 0) and x2 = (7, 0, 7, 1).

(θ1, θ2) h(x1;X)(E) h(x2;X)(E)

(1,1) 0.5183 0.3298
(0.8,1) 0.5868 0.3602
(1,0.8) 0.5567 0.4151

Obviously, these are conflicting results. In order to make sense of them, we consider the
classical setting in which a single infected individual appears in one patch or the other and
calculate the probability of total extinction. The disease-free quasistationary distribution
of the two-patch model is (7.5, 0, 7.5, 0), which is not a state of the system. Therefore, we
expectXt to fluctuate between the states (8, 0, 7, 0) and (7, 0, 8, 0)when it is near the quasis-
tationary distribution. We therefore consider the probability of extinction from the initial
states x1 = (7, 1, 7, 0) and x2 = (7, 0, 7, 1). These probabilities are reported in Table 8.

The results in Table 8 provide insight into the effect of the different control strategies.
First, disease control measures deployed in a single patch promotes disease extinction in
both patches. The probability of partial extinction in patch 1 given by h(A;X)(x0) reported
in Table 7 and h(E;X)((7, 1, 7, 0)) reported in Table 8 reflects a bias towards patch 1, while
h(E;X)((7, 0, 7, 1)) reflects a bias towards patch 2. From the perspective of a given patch,
the optimal outcome is a result of deploying control measures in that patch, which may
or may not coincide with minimizingR0. The product of column h(x1;X)(E) and column
h(x2;X)(E) can be viewed as giving a global perspective. From this perspective, it is still
optimal to deploy control measures in a way that also minimizes R0. Partial extinction
probabilities, like h(x0;X)(A), may be useful tools for decision-making in the context of het-
erogeneous control in metapopulations. In addition to being a potentially useful indicator
for heterogeneous control problems, h(x0;X)(A) cannot be calculated using branching pro-
cess approximation. The very fact that we have been able to calculate this probability using
LATS illustrates another benefit of the technique, namely, that it is suited to approximating
hitting problems in general.

6. Discussion

The LATS technique combines localization and collapsing of Markov chains to reduce
a DTMC on a countably infinite state space to a finite absorbing Markov chain. It is a
robust tool for approximating general hitting probabilities for typical chains when the
local neighbourhood is sufficiently large. However, increasing the size of a neighbourhood
comes at the cost of increasing computational expense, particularly if the degree of the
induced graph is large. LATS is shown to be effective in some cases where branching pro-
cess techniques are not suitable. This is due, in part, to the fact that LATS captures nonlinear
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behaviour of the Markov chain it seeks to approximate. In addition to solving the general
hitting problem, LATS also gives information about the number of transitions in a path as
well as the likelihood of long sojourns. Therefore, it is a valuable addition to the set of tools
used to analyse stochastic models of real world phenomena.

In Section 5, partial extinction probabilities are shown to have the potential to help
inform deployment of spatially heterogeneous disease control strategies. There are likely
other interesting biological questions that can be formulated as general hitting problems.
LATS is well suited to provide approximations for these problems.

In the context of heterogeneous control strategies, outcome preferences are important
drivers of decision-making. Standard techniques to calculate probability of extinctionmay
not be the ideal way to account for this. Formulating hitting problems that account for
preference, such as partial extinction probabilities, may be useful to optimize decision-
making subject to constrains.
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