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a b s t r a c t

A proof of a general theorem for the calculation of conditional mean duration of a finite
absorbing discrete time Markov chain is presented. In the simplest case, this result
is equivalent to one suggested in the book of Kemeny and Snell (1976). In addition,
we prove that the mean duration and mean conditional duration of a finite absorbing
continuous time Markov chain can be calculated via the fundamental matrix of the
embedded discrete time chain. These results are also extended to certain non-absorbing
Markov chains. Applications are presented to illustrate the utility of these results.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A discrete time Markov chain (DTMC) Xn on a finite state space with homogeneous transition probabilities is
characterized by its probability transition matrix P . The state space of Xn can be partitioned into equivalence classes
by the equivalence relation of communication. If it is impossible to leave an equivalence class once it has been entered, it
is called closed. The states in an equivalence class which is not closed are called transient. Suppose that Xn admits more
than one closed equivalence class with at least one class comprised of transient states. In this case, by reindexing the
state space and exchanging rows and columns of P, we obtain its canonical form

P =

[
S 0
R Q

]
, (1)

where S is a block diagonal matrix. The rows and columns of a block submatrix of S are associated to the states which
form a closed equivalence class. This describes the one-to-one correspondence between the blocks of S and the closed
equivalence classes of the underlying state space. In the case of an absorbing chain, all closed classes are singletons and
S = I , the identity matrix, so that

P =

[
I 0
R Q

]
, (2)

where the dimension n of the identity matrix I is determined by the number of absorbing states.
The fundamental matrix of Xn is given by

N = (I − Q )−1, (3)

where the dimension m of the identity matrix I is determined by the number of transient states. The book of Kemeny
and Snell (1976) contains many well-known results involving the analysis of finite absorbing DTMCs via the fundamental
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matrix. In this article, we will be focused the probability of absorption and the mean time to absorption. At the end of
Chapter 3 (Kemeny and Snell, 1976), the authors elude to the calculation of mean time to absorption conditioned on the
fact that absorption takes place in a specific state. In Section 2, we prove a general theorem regarding the calculation of
the mean time to absorption conditioned on absorption in any subset I of absorbing states. This result is equivalent to
the one eluded to in Kemeny and Snell (1976) in the case that I is a singleton.

If Xt is a time homogeneous continuous time Markov chain (CTMC), then there exists a DTMC Yn associated to Xt ,
formed by conditioning on the fact that a transition has taken place, and called the embedded chain. If Xt is a finite
absorbing CTMC, then Yn will be a finite absorbing DTMC. In Section 3, we develop techniques to calculate mean absorption
and conditional mean absorption times for a CTMC via the fundamental matrix of the embedded DTMC. The general theory
of both continuous and discrete time Markov chains can be found in Allen (2003), Karlin and Taylor (1963) and Norris
(1997).

Consider a general time homogeneous CTMC on a countable state space with initial distribution π . In Milliken (2019), it
is proven that if π is supported on a finite subset of the state space, then the evolution of π according to the CTMC can be
approximated locally in time and space by a finite state space absorbing CTMC. It follows that, in addition to the analysis
of finite absorbing CTMCs, the results in Section 3 are applicable to analysis of local properties of CTMCs on a countable
state space. This local analysis is frequently useful in mathematical models of the spread of infectious disease (Arino et al.,
2019; Milliken, 2019).

If the homogeneous DTMC chain Xn has a finite state space, S , which, when partition by the equivalence relation of
communication, has at least one equivalence class comprised of transient states and m > 1 closed equivalence classes,
then the probability transition matrix P of Xn has canonical form (1), where the submatrix S has m blocks on the diagonal.
Let Ci, for i = 1, . . . ,m, be the closed equivalence classes of S. Then, regardless of where the process starts, the probability
that Xn ∈

⋃m
i=1 Ci tends to 1 as n tends to infinity. As a result of the properties of the equivalence relation of communication

and the memoryless property of Markov chains, if Xn ∈ Ci for some i and n, then the long-term behavior of Xn is determined
by the theory of finite irreducible Markov chains. This theory can be found in many books including Allen (2003), Karlin
and Taylor (1963), Kemeny and Snell (1976) and Norris (1997) and is not the focus of this article. However, in Section 4,
we will extend the results of Section 2 to finite DTMCs with at least one equivalence class comprised of transient states
and more than one closed equivalence class. As noted below, the results of Section 4 can be extended to CMTCs in a
manner similar to the results given in Section 3. Since such extension is so similar to Section 3 as to be redundant, it is
omitted.

One common application of CTMC models is the population dynamics of the spread of an infectious disease. A key
question in all models of population dynamics is that of persistence: what are the conditions under which the population
will persist or go extinct. In the context of stochastic models, persistence can be measured by either the probability of
extinction or mean time to extinction (Keeling and Ross, 2008). In the specific setting of epidemic models, emergence of
the disease can lead to minor epidemics characterized by fluctuations of low numbers of infected individuals leading to
extinction or major epidemics characterized by fluctuations about the solution to a companion deterministic model with
a positive epidemic equilibrium (Arino et al., 2019; Tritch and Allen, 2018). In this case, the mean duration of a minor
epidemic is a feature of interest for public health authorities and is a variant of the mean time to extinction problem. CTMC
models of population dynamics may have a state random variable which accounts for many individual types leading to
high dimensionality and often the state space is countable, rather than finite. Techniques to approximate the probability
of extinction and mean time to extinction have been an area of interest dating back to the work of Whittle (1955) and
continues to be an area of active research today (Arino et al., 2019; Allen and Lahodny, 2012; Billings and Forgoston, 2018;
Borchering and McKinley, 2018; Milliken, 2017; Ovaskainen and Meerson, 2010; Tritch and Allen, 2018).

Commonly used techniques include branching processes, diffusion approximation and the WKB method of asymptotic
analysis. Branching process approximation (including GWbp and multitype) is a linearization technique leading to
potential error in the approximation (Milliken, 2017). Diffusion approximation, also known as Fokker–Planck approxi-
mation, is a second order approximation and can fail for very large or very small populations (Borchering and McKinley,
2018; Ovaskainen and Meerson, 2010). The WKB method has shown promising accuracy, but along with the diffusion
approximation, it can be difficult to implement for high dimensional state space models (Ovaskainen and Meerson, 2010).
The results presented below can be coupled together with a technique known as local approximation in time and space
(LATS) (Milliken, 2019) to form a useful addition to the existing approximation tools mentioned above. Essentially, LATS
combines taking a neighborhood of a set of initial states in the state space (with respect to graph distance in the induced
graph) and the theory of collapsed Markov chains to form finite absorbing Markov chains which capture all local features
of the original model. LATS approximates a CTMC with an absorbing DTMC on a finite state space. One of the well known
results presented by Kemeny and Snell (1976) is that the matrix of absorption probabilities of an absorbing finite state
space DMTC

B = NR (4)

is the product of its fundamental matrix given by (3) and a submatrix of the probability transition matrix (2). In Milliken
(2019), a combination of LATS and this result is used to calculate absorption probabilities related extinction of an emerging
disease outbreak in a single population model of Infectious Salmon Anemia and in a two population Susceptible–Infected–
Susceptible (SIS) metapopulation model. We extend these results by calculating the mean duration of a minor epidemic
when the disease is introduced into the population or into the environment in Section 5. Also in Section 5, we apply
LATS in together with Corollary 2 to form a fast and accurate approximation tool with which we analyze and validate the
results and conclusions of Tritch and Allen (2018).
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2. Mean absorption times in the discrete time setting

Consider the DTMC Xn on a finite state space, S , with stationary transition probability matrix, P , given by (2). Suppose
that S = C ∪ T where C and T are non-empty disjoint sets comprised of the absorbing and transient states of S ,
respectively. Let N = (I − Q )−1 be the fundamental matrix of Xn and let ξ be a column vector with 1 in every entry.
The following result is a combination of results in Chapter 3 of Kemeny and Snell (1976).

Theorem 2.1. Let Xn be as above. Then the matrix B given by (4) contains the probability of absorption in absorbing state sj
from transient state si in the entry (B)ij. Furthermore, τ = Nξ contains the mean time to absorption into some absorbing state
from the transient state si in entry ωi.

In addition to the above assumptions on Xn, now assume that I is a non-empty, proper subset of C. The next theorem
is the main result for in this Section.

Theorem 2.2. Let Xn be as above. Then the mean time to absorption in the set of states I from the transient state si is the
ith entry of the vector

α = D−1
bI NDbI ξ, (5)

where DbI is the diagonal matrix whose diagonal entries are the entries of bI =

∑
ℓ∈I

bℓ with bℓ the ℓth column of B = NR.

Proof. The well-known formula ω = Nξ is derived from the one-step analysis

ωi = 1 +

∑
k∈T

pikωk (6)

where ωi is the mean time to absorption in the set C from the transient state si. This equation can be rewritten

ωi =

∑
j∈C

pij1 +

∑
k∈T

pik(1 + ωk) (7)

Now let αi be the mean time to absorption in some absorbing state in I from si and βi be the mean time to absorption
in some absorbing state in C \ I. Let (bI)i be the ith entry of bI =

∑
ℓ∈I bℓ. Then

ωi = (bI)iαi + (1 − (bI)i) βi (8)

and

(bI)iαi + (1 − (bI)i) βi =

∑
ℓ∈I

piℓ1 +

∑
k∈T

pik(bI)k(1 + αk) +

∑
j∈C\I

pij1 +

∑
k∈T

pik(1 − (bI)k)(1 + βk). (9)

Since absorption in I and absorption in C \ I are independent events, we can restrict our consideration to

(bI)iαi =

∑
ℓ∈I

piℓ1 +

∑
k∈T

pik(bI)k(1 + αk). (10)

Let DrI be the diagonal matrix whose diagonal entries are the entries of rI =
∑

ℓ∈I rℓ, where rℓ is the ℓth column of R.
Written as a matrix equation, (10) becomes

DbIα = DrI ξ + QDbI (ξ + α) (11)

(I − Q )DbIα =
(
DrI + QDbI

)
ξ (12)

α = D−1
bI (I − Q )−1 (DrI + QDbI

)
ξ (13)

The result follows from the fact that N = (I − Q )−1
=
∑

∞

k=0 Q
k and

R + QB = R + QNR = IR + Q

(
∞∑
k=0

Q k

)
R =

(
∞∑
k=0

Q k

)
R = NR = B. □ (14)

3. Mean absorption times in the continuous time case

Let Xt be a finite absorbing homogeneous CTMC with jump times Jk, k = 0, 1, 2, . . . , and embedded DTMC Yn such
that

XJn = Yn, n = 0, 1, 2, . . . . (15)
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The waiting times (also called holding times or residence times) Wk = Jk − Jk−1 are the random variables representing
the time spent in state XJi−1 before transitioning to a different state. Therefore, Wk are random variables that depend
only on the current state. The waiting time, and hence mean waiting time, for transition out of an absorbing state sj is
infinite. However, the mean waiting times for transition out of a transient state are strictly positive and finite. Let η be
the vector such that ηi is the mean waiting time for the transition out of the transient state si. The following is a Corollary
to Theorem 2.1.

Corollary 1. Let Xt be a finite absorbing homogeneous CTMC with embedded chain Yn. Then the probability transition matrix
P for Yn is of the form (2) and the mean time to absorption in the set of absorbing states is

ω = Nη, (16)

where N = (I − Q )−1 and η are as described above.

Proof. Let T be the set of transient states and C be the set of absorbing states. Let ωi be the mean time to absorption in
C from si ∈ T . In this case, the one-step analysis equation becomes

ωi = ηi +
∑
k∈T

pikωk. (17)

In matrix form we have

ω = η + Qω (18)

(I − Q )ω = η (19)

ω = (I − Q )−1η □ (20)

Similarly, by substituting ηi for 1 in (7), we may extend Theorem 2.2 to finite absorbing homogeneous CTMCs. Let S
be the state space of Xt and let T the set of transient states and C the set of absorbing states. Let I be a nonempty proper
subset of C.

Corollary 2. Let Xt , Yn, P , and η be as in the previous Corollary. Let S, T , C and I be as above. Then the mean time to
absorption in the set I is

α = D−1
bI NDbIη, (21)

where DbI is as in Theorem 2.2.

Proof. Substituting ηi in (7) and following the arguments in the proof of Theorem 2.2 yields the result. □

4. Mean time to absorption in a closed communication class

In this Section, we turn our attention to discrete and continuous Markov chains with a finite state space S , which when
partitioned into equivalence classes, consists of more than one closed class and at least one class containing transient
states. If Yn is a homogeneous DTMC on S , then its transition probability matrix has the form (1). The assumption on S
implies that the submatrix S of P is block diagonal with at least two blocks. Each block corresponds to one of the closed
equivalence classes. A closed class, as a set, behaves in manner similar to an absorbing state, in that once the process
enters a closed class it remains there with probability 1. Also, regardless of where the process starts, its distribution is
eventually supported on the states of the closed equivalence classes. Together, these facts mean that the chain eventually
behaves like an irreducible chain. Irreducible (or regular) chains are covered in many sources including Allen (2003),
Karlin and Taylor (1963), Kemeny and Snell (1976) and Norris (1997), but are not the focus here. Instead we will focus
on the mean time to absorption in the set of closed equivalence classes and the conditional mean time to absorption in
one or more closed classes.

To study the Markov chains described above, we will make use of the theory of collapsed Markov chains (Burke and
Rosenblatt, 1958; Dey and Mukherjea, 2014; Hachigian, 1963; Milliken, 2019), called lumpable chains in Kemeny and
Snell (1976). The basic definitions and results below are given for DTMCs, but hold for CTMCs as well.

Definition 4.1. Let Xn be a DTMC on a finite state space S = {1, 2, . . . ,m}. Let S1, S2, . . . , Sr be r , 1 ⩽ r < m, pairwise
disjoint subsets of S containing more than one state so that S = S1 ∪ S2 ∪ · · · ∪ Sr ∪ A, where A = S \

⋃r
i=1 Si. Then the

partition of S, given by S1, S2, . . . , Sr and the singletons of A defines a collapsed chain Yn given by

Yn = i if and only if Xn ∈ Si and Yn = u if and only if Xn = u,

where n ≥ 0, 1 ⩽ i ⩽ r , and u ∈ A.
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A collapsed chain is a stochastic process, but may not be a Markov process. The main obstacle is that the probability
of transition out of a state i, the result of collapsing Si, may depend the manner in which the original chain entered Si,
and its evolution in Si, before leaving. This violates the memoryless property of a Markov chain. We are able to avoid this
problem and refer to the following theorem and corollary from Milliken (2019).

Theorem 4.2. Let Xn be a homogeneous DTMC on a countable state space S. Let C ⊂ S be a proper subset of the state space
which is closed with respect to communication. Let f be a many to one function given by

f (s) =

{
s if s ∈ S\C
c if s ∈ C .

Then Yn = f (Xn) is a Markov chain.

Corollary 3 is crucial to the application of collapsed chains in the results that follow. However, before we proceed we
must establish the following definition, also from Milliken (2019).

Definition 4.3. For a DTMC Xn on a state space S, the probability of first hitting a state y from another state x in exactly
m steps is denoted

h(m)
(y;X)(x) = P(Xm = y|X0 = x ∩ Xi ̸= y∀i = 1, . . . ,m − 1).

The probability of first hitting y from x is given by

h(y;X)(x) =

∞∑
m=0

h(m)
(y;X)(x) = lim

N→∞

N∑
m=0

h(m)
(y;X)(x). (22)

Corollary 3. Let Xn be a homogeneous DTMC on a countable state space S. Let Yn be the collapsed chain formed by collapsing
Xn along disjoint subsets which are closed with respect to communication. Then Yn has the Markov property. Following the
notation in Definition 4.1, whenever x ∈ A for all 1 ⩽ i,

h(Si;X)(x) = h(i;Y )(x),

where h(Si;X)(x) is the probability of first hitting the set Si from state x with respect to chain Xn and h(i;Y )(x) is the probability
of first hitting state i from x with respect to Yn.

Consider the homogeneous DTMC, Xn, on the finite state space S . Suppose that S has at least one equivalence class
comprised of transient states and m > 1 closed equivalence classes. Let Yn be the chain formed by collapsing the closed
equivalence classes of Xn. If P is the probability transition matrix of Xn, then it has canonical form (1). If there are j transient
states in S , then Q is a j× j matrix. Let k0 = 0 and let k1, . . . , km be defined such that ki − ki−1 is the number of states in
the ith closed class of S. Then S is a km × km matrix and R is a j× km matrix. Let K be the km ×m matrix such that the ith
column of K is 1 in the ki−1 + 1, . . . , ki entries and 0 in the remaining entries. Let

∼

P be the probability transition matrix
of Yn. Then

∼

P =

[
I 0
∼

R Q

]
, (23)

where I is the m × m identity matrix and
∼

R = RK .

Remark 1. The final two results deal with DTMCs. There exist extensions to the CTMC case as described in Section 3.
Since these extensions and their reasoning are so similar to the results of Section 3, they are omitted.

Corollary 4. Let Xn be as described above. The probability of absorption in the ith closed equivalence class from the transient
state sj is the ijth entry of

∼

B = N
∼

R. Furthermore, the mean time to absorption into the closed equivalence classes is τ = Nξ .

Proof. The calculation of
∼

B and τ are the result of application of Theorem 2.1 to the collapsed chain Yn. The statement
follows from Corollary 3. □

Let C1, . . . , Cm be the m > 1 closed equivalence classes of Xn. If I∗ is a proper subset of {1, . . . ,m}, then let⋃
i∈I∗

Ci =

⋃
i∈I∗

{ki−1 + 1, . . . , ki} = I. (24)



E. Milliken / Statistics and Probability Letters 151 (2019) 106–115 111

Corollary 5. Let Xn be as described above. The mean time to absorption in any of the closed equivalence classes of S with
index in I∗ from the transient state si is the ith entry of the vector

ν = D−1
bI NDbI ξ, (25)

where N and DbI are as in Theorem 2.2 and I =
⋃

i∈I∗ Ci.

Proof. Applying Theorem 2.2 to the collapsed chain Yn suggests that ν = D−1
∼

bI∗

ND∼

bI∗

ξ , where
∼

b
∗

I =
∑

ℓ∈I∗

∼

bℓ with
∼

bℓ

the ℓth column of
∼

B. So, it suffices to show that
∼

b
∗

I = bI . For a set A, let

δA(i) =

{
= 1 if i ∈ A
= 0 otherwise.

(26)

Let ι(I) be the km × 1 vector with δI(i) in the ith entry and ι(I∗) be the corresponding m × 1 vector formed using δI∗ .
Since

∼

B = N
∼

R = NRK = BK ,

b∗

I =
∼

Bι(I∗) = BK ι(I∗) = Bι(I) = bI . □ (27)

5. Applications

In this Section, two applications are presented to illustrate the utility of the results presented above. In the first
application we consider a Susceptible–Infected-Virus model of Infectious Salmon Anemia. This model has two infectious
compartments. It has been shown the multitype branching process approximation fails to adequately capture the
probability of extinction of very small populations, while approximation with LATS together with (4) matches the
probability estimated by analysis of repeated numerical simulation (Milliken, 2019). We extend these results by applying
Corollary 2 to calculate the duration of a minor epidemic when the disease is introduced into the population by a single
infected individual or into the environment by an infectious dose of virus. In the second application, we consider a simple
Susceptible–Infected–Susceptible (SIS) model which can be reduced to a one dimensional birth–death process. This model
is studied by numerous authors (cf Borchering and McKinley, 2018; Ovaskainen and Meerson, 2010), but we will compare
directly to the recent work of Tritch and Allen (2018). We illustrate the accuracy of our techniques, validate the results
of Tritch and Allen (2018) and provide new insight into the behavior of the model near the critical value R0 = 1.

5.1. Accuracy for very small populations

In Milliken (2019), a Susceptible–Infected–Virus model of Infectious Salmon Anemia is presented. Parameters are
chosen compare and contrast numerical approximation, multitype branching process approximation and the combination
of LATS with (4) to approximate the probability of extinction in a very small population. This CTMC is related to the scaled
system of differential equations

Ṡ = S(β − µS) − S(I + V )
İ = S(I + V ) − αI
V̇ = −ωV + δI.

(28)

The state variables S and I represent number of infected finfish, while the state variable V represents the number of
infectious doses of viral pathogen in the environment. The parameters β, µ, α, ω, δ are the net birth rate of susceptible
fish, density dependent death rate of susceptible fish, disease induced mortality for infected fish, viral clearance rate
and viral shedding rate, respectively. We consider the CTMC X(t) = (S(t), I(t), V (t)) characterized by the infinitesimal
transition probabilities

pij(∆t) = P(X(t + ∆t) = j|X(t) = i) = σij∆t + o(∆t),

where the transition rates are given in Table 1.
Assuming that the number of Susceptible fish is fixed at the disease-free quasistationary distribution S(t) = S =

β

mu
and that all transitions are independent, we can use branching process approximation (Allen and Lahodny, 2012; Milliken,
2019; Harris, 1963) to estimate the probability of extinction by

Pext = qi11 q
i2
2 , (29)

where I(0) = i1 and V (0) = i2 and (q1, q2) is the minimal fixed point of the offspring probability generating function (pgf)
for the multitype branching process given by

F (u1, u2) = (f1(u1, u2), f2(u1, u2)) =

(
α + δu1u2 + Su2

1

α + δ + S
,
ω + Su1u2

ω + S

)
. (30)
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Table 1
Transition rates for the CTMC X(t) = (S(t), I(t), V (t)).
i j σij

(S, I, V ) (S + 1, I, V ) βS
(S, I, V ) (S − 1, I, V ) µS2
(S, I, V ) (S − 1, I + 1, V ) S(I + V )
(S, I, V ) (S, I − 1, V ) αI
(S, I, V ) (S, I, V + 1) δI
(S, I, V ) (S, I, V − 1) ωV

Table 2
Duration of a minor epidemic when the disease is intro-
duced into the population (S(0) = 10, I(0) = 1, V (0) = 0)
or into the environment (S(0) = 10, I(0) = 0, V (0) = 1)
with parameters β = 10, µ = 1, α = 3.3, δ = 1.3, ω = 4
calculated via numerical simulation (Mean) and LATS with
Corollary 2 (MTE).
Initial State Mean MTE

(10, 1, 0) 0.2857 0.2851
(10, 0, 1) 0.2544 0.2542

Fig. 1. The size of the susceptible population at the disease-free quasistationary distribution is given by β

µ
. β is the independent variable, while

µ = 1, α = 3.3, δ = 1.3, ω = 4 are fixed. The probability of extinction is approximated using branching process approximation (blue), numerical
simulation via Gillespie algorithm (red) and LATS (black). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Source: Modified from Milliken (2019)

Fig. 1 compares using numerical simulation, multitype branching process approximation and LATS together with (4) to
approximate the true probability of extinction for a particular set of parameters. Likewise, in Table 2 we present the
duration of a minor epidemic calculated using numerical simulation in column Mean and using LATS with Corollary 2 in
column MTE when the disease is introduced into the population (i.e. (S(0) = S, I(0) = 1, V (0) = 0)) or in the environment
(i.e. (S(0) = S, I(0) = 1, V (0) = 0)).

5.2. Mean duration of minor epidemic near R0 = 1

The basic reproduction number of an epidemic, R0, is defined as the average number of secondary infections generated
by a single infectious individual in a totally susceptible population in its lifetime. The threshold R0 = 1 is a well known
threshold separating persistence (R0 > 1) and extinction of the disease (R0 ⩽ 1) in many deterministic epidemic models.
It has also been shown to be a threshold in branching process models separating P{extinction} < 1 (R0 > 1) and
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P{extinction} = 1 (R0 ⩽ 1) (Allen and Lahodny, 2012). The deterministic SIS model with transmission rate β , recovery
rate γ , total population N and having R0 =

β

γ
is given by the differential equation

Ṡ = −β
SI
N

+ γ I, (31)

İ = β
SI
N

− γ I. (32)

This model is conservative (S(t) + I(t) = N) and can therefore be reduced to

İ =
β

N
(N − I)I − γ I. (33)

This reduced model is related to the birth–death CTMC I(t) characterized by the transition probabilities

pi,i+1(∆t) = P(I(t + ∆t) = i + 1|I(t) = i) =
β

N
(N − i)i∆t + o(∆t) (34a)

pi,i−1(∆t) = P(I(t + ∆t) = i − 1|I(t) = i) = γ i∆t + o(∆t) (34b)

pi,i(∆t) = P(I(t + ∆t) = i|I(t) = i) = 1 −
β

N
(N − i)i∆t + γ i∆t + o(∆t). (34c)

In Tritch and Allen (2018), Tritch and Allen approximate the process I(t) given by (34) by a simple birth–death process
X(t) with mean given by the exponential growth model

ṁ = (β − γ )m. (35)

According to the well known result of Whittle (1955), the probability of extinction for this simple birth–death process
given initial i individuals is

Pext =

(
γ

β

)i

. (36)

In addition, Tritch and Allen (2018) derive the mean time to extinction for the simple birth–death process. Let Ti be the
extinction time when X(0) = i. Suppose that γ = 1. Then, from Tritch and Allen (2018)

E(Ti|Ti < ∞) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− ln

(
1 −

1
β

) i∑
k=1

βk−1
+

i−1∑
k=1

Hkβ
k−1, β > 1

− ln (1 − β)

i∑
k=1

βk−1−i
+

i−1∑
k=1

Hkβ
k−i, β < 1,

(37)

where Hk =
∑k

n=1
1
n are the harmonic numbers.

Numerical simulation of the CTMC (34) eventually leads to extinction almost surely. To recover statistics like the
probability of extinction and the mean duration of a minor epidemic from repeated numerical simulations, it is necessary
to introduce a stopping criterion associated to a full-blown epidemic. A natural choice for this stopping criterion is that
the number of infected individuals reaches the level of the epidemic equilibrium of the related deterministic model (33).
However, it has been shown that the relevant behavior of a minor epidemic can be captured by choosing an upper
threshold number of cases that is less than the equilibrium value of the deterministic model (Arino et al., 2019). In Tritch
and Allen (2018), the authors compare the results of Eq. (37) with statistics from 106 numerical simulations of (34) with
the added stopping criterion equivalent to making i = 30 an absorbing state. The LATS approximation of (34) with the
assumption that i = 30 is an absorbing state is equivalent to a version of the Gambler’s Ruin problem with two absorbing
states and is a finite absorbing Markov chain. Following Tritch and Allen (2018), we assume for illustration that γ = 1,
N = 2000, making R0 = β , which we allow to vary. In Table 3, the mean duration of a minor epidemic as approximated
by (37) in column µ, the associated statistic calculated from 106 numerical simulations with i = 30 an absorbing state in
column Mean, and the same statistic calculated using (21) from Corollary 2 applied to the related LATS approximation in
column MTE are presented for various values of β = R0.

From Table 3, we see that the accuracy conditional duration calculated using (21) is confirmed by numerical simulation.
It should be noted that 106 numerical simulations run in parallel on 8 computing cores takes 2–4 h to run, while
preparing the matrices and calculating MTE takes 1–2 min. Even though the behavior of a minor epidemic can be
captured by choosing an upper threshold number of cases less than the equilibrium number of infected individuals
predicted by the deterministic model (31), the choice of threshold depends on R0 (Arino et al., 2019). Let iT be the
upper threshold and let I be the number of cases predicted by the positive equilibrium of the differential equation
(33). Let PiT {extinction} be the probability of extinction using of the CTMC with iT absorbing and let PI{extinction} be
the probability of extinction of the CTMC with I absorbing. For our purposes we will choose the upper threshold iT so
|PI{extinction} − PiT {extinction}| = O(10−5). Table 4 presents µ, MTE calculated by assuming iT is absorbing, iT and I for
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Table 3
The mean duration of a minor epidemic for an SIS model (34) with γ = 1,
N = 2000, for various values of β calculated using (37) (µ), 106 numerical
simulations with i = 30 absorbing (Mean), and using (21) assuming i = 30
is absorbing (MTE).
R0 µ Mean MTE

0.70 3.50 3.49 3.50
0.90 5.66 5.22 5.22
0.95 7.28 5.67 5.67
1.05 7.02 5.50 5.50
1.10 5.29 4.94 4.94
1.50 1.97 2.23 2.23

Table 4
The mean duration of a minor epidemic for an SIS model (34) with γ = 1,
N = 2000, for various values of β calculated using (37) (µ), 106 numerical
simulations with i = 30 absorbing (Mean), and using (21) assuming i = 30
is absorbing (MTE).

R0 µ MTE iT I

0.70 3.50 3.50 30 0
0.90 5.66 5.59 70 0
0.95 7.28 7.03 100 0
1.05 7.02 8.45 95 95
1.10 5.29 5.83 170 182
1.50 1.97 2.23 25 667

various values of β = R0 when γ = 1 and N = 2000. Results from the table confirm the conclusion of Tritch and Allen
(2018) that the mean duration of a minor epidemic increases as R0 approaches the critical threshold R0 = 1.

From Tritch and Allen (2018), it is not clear how sample paths are changing, just that the change leads to a longer mean
duration of a minor epidemic. It is not clear whether the sample paths remain close to the disease-free quasistationary
distribution but fluctuate more or if typical paths make long sojourns away from that distribution. In contrast, our
technique provides insight via the upper threshold iT . As R0 approaches 1 from above or below, the upper threshold
number of cases that is needed to make |PI{extinction} − PiT {extinction}| sufficiently small becomes large relative to R0
values away from 1. This indicates that the probability of long sojourns away from the disease-free distribution which
ultimately lead to extinction is higher near R0 = 1. Analyzing the CTMC via the embedded DTMC gives fast, accurate
results that capture the underlying behavior of the CTMC.

6. Discussion

In this article, we present extensions of a result of Kemeny and Snell (1976) which allow for the calculation
of conditional mean duration with respect to a CTMC by analysis of the embedded DTMC. When combined with
LATS (Milliken, 2019), the results presented here form an accurate and robust technique for calculating mean first
passage times like the mean time to extinction and the mean duration of a minor epidemic. First passage problems
such as these are the topic of recent and ongoing research. There are existing techniques used to approximate first
passage problems including branching process approximation (broadly speaking), diffusion approximation and WKB
approximation. Branching processes and the diffusion approximation can fail to accurately approximate the meant time
to extinction in some cases. WKB approximation combined with small population approximations can be accurate, but
can be difficult to implement for models with a large number of population types. The method presented here combining
LATS with analysis of the CTMC via the embedded DTMC is accurate and suitable for models with multiple population
types. This method is a useful addition to the tools available for studying a wide variety of first passage problems.
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