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Overview

My research interests are inherently broad ranging and expanding, being driven by an openness
to challenges of new problems and collaborators, as well as a fascination with the interaction
between global and local combinatorial structure. Thus far my research has focused on two primary
directions, the combinatorial properties of random graphs with an emphasis on those related to the
spectrum, and the combinatorics of partially ordered sets. In this overview, I highlight how some
of my recent work illuminates the interaction between local and global combinatorial structure.
In the sections that follow, I provide a more detailed discussion of my research and how I see my
research progressing without the intervention of new collaborative opportunities.

Perhaps the most recognized example of local structure influencing the global structure is the
Hajnal-Szemered́ı theorem [18], which gives a tight minimum degree condition to guarantee the
existence of a Kr-factor in a graph. Recently, with Balogh, Lee, and Kemkes, I generalized this
result to weighted graphs, providing upper and lower bounds on the minimum weighted degree
necessary to assure that there is a Kr-factor with every clique having weight at least t

(
r
2

)
[1]. As a

surprising consequence of our work, it is likely that for fixed t the minimum degree condition is a
decreasing function of r.

In the study of random graphs the expansion of the graph often plays a somewhat strange role
as both a local and a global combinatorial property. For instance, the Alon-Boppana theorem gives
bounds on the spectrum of the adjacency matrix based on the local condition that every vertex
has a fixed degree d [33]. Recently, I extended this theorem to the spectrum of the normalized
Laplacian for graphs with irregular degree sequences [50]. These bounds on the spectrum of the
normalized Laplacian may be thought of as bounding how good of an expander can be constructed
with a given degree sequence. As an additional consequence of my work, I show that for a fixed
number of edges, a regular (or near regular) graph is not the best expander.

At other times the expansion properties of a graph may be thought of as a local property, in
that any particular set of vertices has a relatively large neighborhood. Many of the results on flows
on graphs take this viewpoint, showing that if a graph is a sufficiently good expander then there
are “good” routing schemes (see, for instance [16, 17, 27, 49]). Ironically, my recent work with
Chung and Zhao on selfish routing (in particular, Braess’s paradox) in expanders [8] follows this
scheme with the opposite conclusion; the presence of expansion allows for a selfish routing scheme
to decrease the overall performance of the network.

The local combinatorial structure has a somewhat different flavor when considering the com-
binatorics of posets. For instance, in my recent work with Biró, Howard, Keller, and Trotter on
partitioning a subposet of the subset lattice, our techniques were guided by specific cardinality
relationships between successive levels of the subset lattice [2]. This work was inspired by a com-
mutative algebra conjecture of R. Stanley from 1982 [44] and has since been cited by several papers
within that community.

1. Spectral and Random Graph Theory

Although there are several different spectra associated with a random graph, my research focuses
on the spectrum of the normalized Laplacian L = I − D−1/2AD−1/2 (where A is the adjacency
matrix and D the diagonal matrix of degrees) which has been shown to be closely related to many
algorithmic and structural aspects of the graph [9]. Many of these results, rather than relying on the
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full spectrum only use the spectral gap λ∗, which bounds the non-trivial eigenvalues in the interval
[λ∗, 2 − λ∗]. For example, if the spectral gap is large then there exist efficient, distributed, low-
congestion methods for multi-commodity flow on the underlying network [16, 17, 27, 49]. For these
results, the key structural observation is that the spectral gap is closely related to the expansion
properties (conductance, Cheeger constant, etc.) of the underlying network [30, 43]. Because of
the broad reaching applications of the spectrum of the normalized Laplacian, much of my work on
random graphs has focused on bounding, calculating, and applying the spectrum or spectral gap.

The well-known Alon-Boppana theorem provides an explicit upper bound of 2
√

d−1/d + o(1) on
the spectral gap of a d-regular graph, where the o(1) term decreases with the diameter of the graph.
Recently, by considering the weighted spectral radius of the universal cover graph, I generalized
this result to graphs with non-uniform degrees, providing an upper bound of 2d̄

√
d̄−1/d̃+o(1), where

d̄ and d̃ are the average degree and the averaged squared degree, and the o(1) term depends on the
“robustness” of the graph [50]. Unless the graph is regular, this bound is strictly larger than the
bound provided by Alon-Boppana, and in fact, I show that this difference is necessary. That is, for
a given number of edges, the associated regular graph is not the extremal expander.

However, from an application point of view, an upper bound on the spectral gap is of limited
use, and so there has been considerable effort expended in the explicit calculation/estimation of
the spectral gap for various networks. In particular, with the continued rise in importance of
complex networks such as the internet, there has been significant effort in analyzing the spectral
gap of networks that may model complex networks (see [3, 6, 13, 14, 17, 31]). Unfortunately, these
arguments are highly ad-hoc and there are few unifying themes between them. While developing an
analysis for the semantic model for complex networks which appears in my thesis [51, 52, 54], Mihail
and I derived a general reduction scheme for estimating the spectrum of the normalized Laplacian.
Specifically, building off ideas used by Chung, Lu, and Vu to analyze the expected degree sequence
model [6], we reduce the analysis of the spectrum to two matrices, one deterministic and one which
is in expectation the zero matrix [32]. As a consequence, we improve the condition for the expected
degree sequence model having at least constant spectral gap from ω(ln2(n)) to Ω(ln3/2(n)). It is
also worth noting that, unlike recent matrix concentration techniques [34, 39], our techniques will
apply to graphs with dependent edges.

As mentioned previously, one of the most powerful aspects of the expansion of networks is that
it implies the existence of efficient, distributed, low-congestion methods for multi-commodity flow.
However, implicit in these results is that the routing is occurring in a cooperative manner, which
anyone who has ever sat through rush hour traffic knows is not realistic in all situations. Thus,
it is natural to consider what can be said in a selfish routing situation. Perhaps one of the most
unusual results regarding selfish routing is Braess’s observation that there are theoretical road
networks where it is possible to improve the common latency by removing roads, even roads with
extremely fast travel times. Specifically, he considered selfishly routing one unit flow from s to t in
the network depicted in Figure 1. When the flow is routed selfishly (see Figure 1(a)), all of the flow
passes through the zero latency central edge and the common latency is 2. However, by removing
the central zero latency edge (see Figure 1(b)), the selfish routing will spread the flow uniformly
over the paths between s and t, resulting in an common latency of 3/2.

Since its discovery, Braess’s paradox has spawned a significant amount of work aimed at under-
standing the full implications of the paradox, both theoretically [15, 22, 36, 37] and via anecdotal
observations [12, 28]. In many ways the trend towards studying the “Price of Anarchy” [29, 35] has
its roots in the discovery of Braess’s paradox. However, these “worst case” analyses via designer
instances give little insight into the practical consequences of Braess’s paradox. Although the anec-
dotal evidence indicates that Braess’s paradox can occur in real world networks, it gives little to no
feeling for how prevalent or severe the paradox it is in real world networks. Recently, Valiant and
Roughgarden [48] began to answer this question by providing the first proof that Braess’s paradox
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(a) Original Network with equilibrium latency 2
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(b) Modified network with equilibrium latency 3/2

Figure 1: Braess’s Paradox

could occur in a large class of non-designer graphs. Specifically, they showed that in sufficiently
dense instances of Erdős-Rényi random graphs with affine latency functions satisfying certain mild
conditions, Braess’s paradox occurs with high probability. Chung and I were able to show that this
phenomenon extends almost down to the connectivity threshold for Erdős-Rényi random graphs [7].
With Zhao, we have extended our analysis to encapsulate expanders (with no global minimum de-
gree condition) and latency functions which need only be convex [8]. Ironically, this implies that
precisely those conditions (such as, expansion) that are known to lead to good routing behaviors
also inexorably lead to Braess’s paradox.

1.1. Future Directions. The recent work of Oliveira [34] and Chung and Radcliffe [39] has es-
sentially resolved the question of determining the spectrum for random graphs with independent
edges. However, many recent models of random graphs, especially those developed to model com-
plex networks, are introducing a two-step random process where the edge probabilities themselves
are random (see, for instance, the multiplicative attribute graphs [26] and my work on random dot
product graphs [54, 53, 51]). Together with Radcliffe, I am working on resolving the issues posed
by these random graphs and developing a general framework for their analysis.

Even if the case of the two-step random process could be resolved, there would still be a large class
of graphs to be dealt with, namely those with dependent edges. By my decomposition result, this
can be dealt with by bounding the spectral norm of a matrix C where E [C] = 0. Since E [C] = 0,
the spectral norm of C may be thought of as a centered random variable in a non-commutative
probability space, which brings the tools of free probability into play. As an added benefit, much
of the combinatorial structure for non-commutative probability spaces comes from the lattice of
non-crossing partitions, and thus lies in the intersection of my current research interests.

With Chung and some of her graduate students, I have recently begun considering the applica-
tion of expanders/spectral graph theory to pursuit-evasion games, otherwise known as Cops and
Robbers. The primary open question in this field is how many cops are necessary to catch a single
robber on a graph. It has been conjectured by Meyniel that on an n vertex graph the number
of cops necessary is O(

√
n), however the current results (found independently by several groups)

only show that O
(
n1−o(1)

)
suffices. As all of these results rely on enforcing a very slight expansion

condition, we are exploring how strengthening this condition affects the number of cops required.

2. Combinatorics of Partially Ordered Sets

My research involving the combinatorics of partially ordered sets has focused primarily on two
questions: First, what is the nature of the interval partitions of the “closed” subposets of the
sub(multi)set lattice? And second, how “unfair” is the act of forming a linear extension of a poset?
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Figure 2: Partition of 25 −∅ into intervals witnessing Stanley depth 3

2.1. Poset Partitioning. The first of these questions arises naturally from the work of Herzog et
al. on Stanley depth, an invariant from commutative algebra which is at the heart of a conjecture
that is almost 30 years old [44]. More formally, the combinatorial question is; given a multi-set
G on n symbols and an upwardly closed collection collection of sub-multi-sets, what is the largest
k such that the collection can be partitioned into intervals [A,B] = {C : A ⊆ C ⊆ B} where B is
maximal in at least k symbols? The work of Herzog et al. shows that this quantity is the Stanley
depth of a particular module encoded by the instance. In the case where G is a set (corresponding
to the square-free monomial ideals), the question can be rephrased as: Given an anti-chain A in
the subset lattice on n elements, how large can k be so that the upset of A can be partitioned
into intervals [Ai, Bi] so that |Bi| ≥ k for all i. As part of the their work Herzog et al. found by
computer experiment that if the antichain is {∅}, then for n ≤ 9 the maximal value of k is

⌈
n
2

⌉
.

With Biró, Howard, Keller, and Trotter, I was able to use purely combinatorial techniques to
finish the work of Herzog et al. on 2n−{∅}, showing that k = dn/2e [2]. We provided two separate
proofs of this result by constructing partitions (one recursively and one directly) of 22t+1 − ∅
with the surprising additional property that every interval [A,B] satisfies that |A| = 2s + 1 and
|B| = s + t + 1. For example, see the partition into intervals for t = 2 given in Figure 2. This
result provides, to our knowledge, the first calculation of the Stanley depth for an infinite class of
modules, namely the maximal ideals.

From a strictly combinatorial point of view, there are two natural directions to generalize this
result: The first is to consider the partitions to consider the subposet of the subset lattice where
every element has size at least d. The second is to consider a lower bound on k based on the number
of minimal elements. In fact, for the first, Shen was able to extend our methods to show that if
n ≤ d < 4d + 3, then the value for k is bn−d/d+1c + d [42]. For the second, Shen and Cimpoeaş
(independently) used our work as a base case to show that a for a special class of minimal elements,
if there are m minimal elements then k ≥ n−bm/2c [10, 42]. Using local combinatorial techniques my
coauthors and I were able to significantly shorten both of these proofs and extend their applicability.
Specifically, for the first, Keller, Shen, Streib, and I were able to extend the range of applicability
to d ≤ n < 5d+ 4 [23] while simplifying the proofs. While for the second, Keller and I showed, via
a significantly shorter proof, that restriction on the minimal elements was unnecessary [24].

2.2. Poset Unfariness. The definition of “unfairness” of a linear extension in my second area
of research was introduced by Tanenbaum et al. and termed linear discrepancy [45]. One of the
motivations for their study was the following hypothetical scenario: patients are triaged on their
arrival into an emergency room and are treated according to the seriousness of their injuries.
Naturally, one would wish to treat patients with incomparable injuries as close together as possible
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while still respecting the ordering imposed by the injuries. For a given poset, the least k so that
there is a linear extension in which incomparable elements are separated by at most k is the linear
discrepancy of the poset. It is worth noting that the linear discrepancy of a poset is equal to the
bandwidth of its co-comparability graph [11]. At the end of their founding work, Tanenbaum et
al. proposed a series of eight challenges and questions for future work on linear discrepancy, which
have been the focus of my research in this area.

The first of these questions was to provide a characterization of the linear discrepancy two posets.
Initial progress was made by Rautenbach who provided a list of 20 posets he conjectured provided
a forbidden poset characterization of linear discrepancy at most two [41]. Howard et al. showed
that in fact there are an infinite number of such forbidden posets of width two [19]. Howard, Keller,
and I finished this list giving a complete forbidden subposet characterization of the poset of linear
discrepancy at most two [20].

The second question Tanenbaum et al. asked essentially concerns when the ability to treat in
parallel incomparable injuries reduces the “unfairness.” Using the work of Choi and West [5],
Howard and I provided complete characterization of those posets where parallel processing does
not mitigate the unfairness. However, despite this characterization we were also able to show that
recognizing such posets is NP-complete [21].

Fundamental to the methods for both of these results is a careful analysis of how a given linear
discrepancy affects the allowable incomparability sets of elements. My remaining work on this
question focused on how restrictions on the number of incomparabilities of an element affects the
linear discrepancy. For instance, Tanenbaum et al. speculated that if every element is incomparable
to at most t elements, then the linear discrepancy is at most b3t−1/2c. Together with Keller, I
provided partial confirmation for this conjecture, showing that it holds for disconnected posets [25].
Additionally, we were able to prove a Brooks’s-type theorem for the linear discrepancy of interval
orders, showing that if every element in an interval order is incomparable to at most t elements
then the linear discrepancy is at most t. Further, the inequality is strict unless the interval order
contains an antichain of size t+ 1.

2.3. Future Directions. Currently, with Keller, I am looking at how the poset partitioning ques-
tion is effected by the complementation map. Specifically, given an instance of the poset partitioning
problem, what can be said about the problem on the complement (within the natural lattice defined
by the multi-set)? This question is motivated by recent observations [38, 40] that the separation of
the answers to these partitioning questions implies Stanley’s conjecture for the class of monomial
ideals. We have preliminary results indicating that when G has few elements this separation occurs.

Although the motivation for the poset partitioning problem has its roots in relatively longstand-
ing conjectures in commutative algebra, it leads to a host of natural combinatorial questions, such
as: What is the complexity of calculating the Stanley depth? What is the Stanley depth of a
“random” monomial ideal or its quotient? Does the combinatorial structure uniquely encode the
algebraic structure? Is there a general relationship between the minimal elements of the poset and
the Stanley depth of the poset?

I believe the most intriguing open question regarding linear discrepancy is the question posed by
Brightwell and Trotter [11, 47]: If P has dimension at least 5, is it the case that dim (P) ≤ ld(P)?
This conjecture is motivated by the observation that dim (P) ≤ width(P) [46], whereas ld(P) ≥
width(P). My work with Keller [25] indicates one possible approach to this problem, through
the context of the critical pairs. Specifically, we show that, like dimension, linear discrepancy is
fundamentally about the behavior of critical pairs, giving a possible route to attack this conjecture.

Recently I have also been working with Jeff Remmel to explore the consequences of the bijection
between unlabelled interval orders and ascent sequences [4]. Specifically, we are looking at the
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nature of this bijection when restricted to semiorders. Our preliminary results have pointed to a
surprising potential structure theorem for the canonical representation of semiorders.
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