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Abstract. Inspired by the recent interest in combining geometry with
random graph models, we explore in this paper two generalizations of
the random dot product graph model proposed by Kraetzl, Nickel and
Scheinerman, and Tucker [1, 2]. In particular we consider the properties of
clustering, diameter and degree distribution with respect to these models.
Additionally we explore the conductance of these models and show that
in a geometric sense, the conductance is constant.

1 Introduction

With the ubiquity and importance of the Internet and genetic information in
medicine and biology, the study of complex networks relating to the Internet and
genetics continues to be an important and vital area of study. This is especially
true for networks such as the physical layer of the Internet, the link structure of
the world wide web, and protein-protein and protein-gene interaction networks.
Due to the size of these networks [3] and the difficulty of determining complete
link information [4, 5] a significant amount of research has gone into finding
models that match observed properties of these graphs in order to empirically
(via simulation) and theoretically understand and predict properties of these
complex networks. There are three models that, together with their variations,
are the core models for these complex networks [6]. The configurational model
and its variants attempt to generate complex networks by specifying the degree
sequence and creating edges randomly with respect to that degree sequence. On
the other hand, the Barabási-Albert preferential attachment model attempts to
model the process by which the network grows, specifically, it posits that vertices
with high degree are more likely to increase in degree when a new vertex is added
to the network. In a similar vein, the copying model [7, 8], also attempts to
model the growth process of a complex networks. However, the copying model
takes the more distinctly biological viewpoint of replication of existing nodes
combined with mutation. All three of these types of models have had success
in reproducing the hallmark features of complex networks, namely a power-law
degree distribution, a diameter that grows slowly or is constant with the size of
the graph, and one of several clustering properties; see [6, 9] for a collection of
such results.

However, there are many other aspects of complex networks that fail to be
captured by these models, for example non-uniform assortativity [10] and the



existence of directed cycles, among others. Thus there is considerable interest in
new models for complex networks that exhibit a power-law like degree sequence,
small diameter, and clustering, and are different enough from the three main
model classes to exhibit other properties of complex networks that are not ex-
hibited by the current models. One potential method to create new models is
to incorporate geometry into already existing models. Flaxman, et al. used ge-
ometry coupled with the preferential attachment model to create a model that
generates a random power-law graph that has small separators [11].

Taking this idea one step further, one can add semantic information to an
already existing model. One such model is the random dot product graph model
applied by Caldarelli, et al. and Azar, et al. [12, 13] and formalized by Kraetzl,
Nickel, Scheinerman, and Tucker [1, 2]. In their work they assign to each vertex
a vector in IRd and then any edge is present with probability equal to the dot
product of the endpoints. Thus, thinking of the vertices as members of a social
network, the vectors together with the dot product encode semantically the idea
of differing “interests” and varying levels of “talkativeness.” We discuss the two
natural generalizations of the random dot product graph model proposed by
Kraetzl, et al, specifically, we remove the restrictions on the vectors imposed in
their earlier work and develop directed generalization. First we briefly outline
in Sect. 2 their model and the known results on diameter, clustering and degree
distribution in order to provide a framework for the rest of this paper. We then
present the two natural generalizations of the random dot product model. In
Sect. 3 and Sect. 4 we demonstrate that an arbitrarily large fraction of the
graph has constant diameter and that both the undirected and directed models
demonstrate clustering. We derive in Sect. 5 explicit formulas for the degree
sequence leading to a super-linear number of edges, which is consistent with
recent results of Leskovec, Kleinberg and Faloutsos [14]. Finally, in Sect. 6 we
turn our attention to conductance. We show that any small separators present
are essentially non-semantic and leave open the question of general conductance.
In Sect. 7 we discuss some areas for future work.

2 Model Specification

Kraetzl, Nickel and Scheinerman develop a new family of random graph model
for social networks based on the dot product. In particular, they consider in detail
the following model. Each vertex v is independently assigned a random vector,
Wv, in IRd, where each coordinate is independently and identically distributed as
1√
d
Uα[0, 1]; that is a scaled copy the uniform distribution on [0, 1] to the α power.

Then each edge {u, v} is present independently with probability 〈Wv,Wu〉. They
go on to show that the resulting graph G, has the following properties for d = 1:

1. The giant component of G has diameter almost surely at most 6 as n →∞.
2. For all vertices u, v, and w,

P (u ∼ w | u ∼ v ∼ w) =
(

α + 1
2α + 1

)2

> P (u ∼ w) =
1

(α + 1)2
. (1)



3. The expected number of vertices of degree k on a n vertex graph generated
in this manner is

1
k!α

(1 + α)
1
α Γ

(
1
α

+ k

)
n

α−1
α . (2)

They proceed to show that for higher dimensions the probability of an arbi-
trary edge is independent of the dimension, but the degree distribution develops
a “bend” in the power law. That is, the slope of the log-log plot of the degree
distribution in numerical studies (and confirmed analytically for d = 2) decreases
sharply for some given degree, which they conjecture to be n/(dα + d).

We consider the two natural generalizations of this model, one undirected
and one directed, and show that they behave similarly to the model described
by Kraetzl, Nickel and Scheinerman and resolve some of the higher dimensional
questions posed regarding the nature of clustering and the diameter in the model.

First we consider the undirected generalization. Let W be a random variable
on a IRd such that if Wi and Wj are distributed as W, P (〈Wi,Wj〉 ∈ (0, 1)) = 1.
Then we define G(W, n) as the graph on n vertices where each vertex v is as-
signed a vector Wv distributed as W and each edge {u, v} is present indepen-
dently with probability 〈Wu,Wv〉. It is clear from this construction that the
restriction on the nature of the distribution W is necessary in order to guaran-
tee that the inner products are all valid, nontrivial probabilities. When a dis-
tribution satisfies this condition, we shall say that it satisfies the inner product
condition. Note that the inner product condition implies that P (‖W‖ < 1) = 1,
and guarantees that there is always some probability of an edge appearing (or
not appearing) between any two pairs of vertices. Although it may seem more
natural to allow for 0 or 1 inner products, precluding these values simplifies the
analysis by forbidding pathological and uninteresting cases that can come about
when there is a positive probability of guaranteeing or forbidding an edge.

The natural generalization of G(W, n) is to consider a directed graph with
similar properties. Suppose (X,Y) is a pair of distributions on IRd×IRd such that
if Xu is distributed as X and Yv is distributed as Y, P (〈Xu, Yv〉 ∈ (0, 1)) = 1. We
will abuse terminology slightly and say that such a (X,Y) pair satisfies the inner
product condition. Then we consider the random directed graph

−→
G(X,Y, n) as

the graph on n vertices, where each vertex v is assigned a pair of vectors (Xv, Yv)
and each directed edge (u, v) is present independently with probability 〈Xu, Yv〉.
Again, the inner product condition is a natural condition driven by the necessity
for the quantity associated to an arc being a probability. Note that it is clearly
not necessary for either of X or Y to have bounded norm, however we believe
that the nature of those distributions such that (X,Y) satisfies the inner product
condition and has unbounded norm are so pathological as to be uninteresting.
Thus, for the remainder of this paper we assume that there is some compact
set K such that P (X ∈ K) = P (Y ∈ K) = 1. Note as well that for clarity of
presentation, we will abuse notation and say that a vertex belongs to a region
R whenever its assigned vector(s) lie in that region.

We observe that G(W, n) generalizes both the Erdős-Rényi model and a
version of the configurational random graph model. The first is achieved by



letting W be a constant random variable. Then it is clear that the model under
consideration is just the Erdős-Rényi model with parameter 〈W,W〉. Also note
that this holds for

−→
G(X,Y, n) by letting both X and Y be constant. Now by

letting d = 1 and P (W = k/c) be proportional to k−α, where c is a normalizing
constant, we have a model that generalizes a randomized configurational model.

In addition to generalizing the Erdős-Rényi and configurational models, there
is a natural interpretation of the vectors and the interaction of those vectors in
the (directed) random dot product graph model. By considering each component
of the vector associated with a vertex as a property or interest of that vertex, we
may interpret the value of the component in a natural way. Furthermore, recent
research into the nature of links in the blogosphere, specifically the Live Journal
networks, have shown that a significant percentage of links can be explained
by properties of the blog, such as the location of the author, interest lists, age,
gender, etc. [15]. This interpretation of random dot product graphs provides a
ready-made collection of tools for creating distributions by applying previous
research into the singular value decomposition and related methods for feature
extraction.

Just as representing entities as vectors, or pairs of vectors, is a natural idea,
we feel that the inner product is a natural way of encapsulating two primary
barriers to “linking”. More explicitly, two websites are unlikely to have a direct
link if their topics are completely unrelated, this corresponds to their vectors
having a large angle between them in the dot product graph representation. On
the other hand, if two websites have nearly identical topics, they still may not be
linked due to the selectivity of one of the websites. That is, if one of the websites
doesn’t link to many things overall, then no matter how close another website’s
interests are there is still a significant barrier to “linking”. The inner product
encapsulates both these barriers in that both the angle between the vector and
the norm of the vectors impact the inner (dot) product.

3 Diameter of “Giant” Component

In this section, we show that an arbitrarily large fraction of the graph generated
by G(W, n) almost surely forms a connected graph with diameter at most 5.
In a slight abuse of standard terminology, we will refer to this arbitrarily large
fraction of the graph as the “giant” component. A key step in the proof of the
diameter of the “giant” component for

−→
G(X,Y, n) is the following lemma, which

generalizes the result on the diameter of the Erdős-Rényi random graph model.

Lemma 1. Let D be a directed random graph on v vertices such that each di-
rected edge is present independently with probability at least p. Then D is almost
surely strongly connected with directed diameter 2.

Proof. Consider some pair of vertices, u and v. The probability that there is not
a directed path of length at most 2 from u to v is at most (1−p2)|V (D)|−2(1−p).
Thus the probability that u and v are not strongly connected by paths of length



at most 2 is at most 1−(1−(1−p2)n−2(1−p))2. But then, the expected number
of such pairs that are not strongly connected by paths of length at most 2 is at
most

n(n− 1)(2(1− p2)n−2(1− p)− (1− p2)2n−4(1− p)2) (3)

which approaches 0 as n →∞. Thus D is almost surely strongly connected with
directed diameter at most 2 [16].

We will denote by B (c; r) (respectively B (c; r)) the open (respectively closed)
ball of radius r centered at c.

Theorem 1. Let W,X,Y be distributions on IRd such that W and (X,Y)
satisfy the inner product condition. Further assume that there is some compact
region K such that X and Y lie inside K almost surely. Then an arbitrarily
large fraction of G(W, n) is connected with diameter 5 and an arbitrarily large
fraction of

−→
G(X,Y, n) is strongly connected with directed diameter at most 5.

We prove only the undirected case here as the directed case follows a similar
but more complicated argument.

Proof. We may assume without loss of generality that W ∈ B (0; 1). Letting
0 < δ < 1

4 , choose ε > 0 such that P (W ∈ B (0; ε)) < δ. Then let A be the
closed annulus B (0; 1)−B (0; ε). For all α ∈ A, choose

rα ∈
{

r > 0| ∀x, y ∈ B (α; r), xT y >
ε2

4

}
, (4)

which is non-empty by the continuity of the inner product. Then ∪α∈AB (α; rα)
is an open cover of the compact set A with some finite subcover, say {B (αi; rαi

)}.
Fix i such that P (W ∈ B (αi; rαi)) 6= 0. Then, as n → ∞, there are almost

surely infinitely many vertices that lie in B (αi; rαi). It then follows from a result
of Erdős and Renyi, since the probability of every edge is at least ε2

4 and for fixed
{Wv} each edge is present independently, the graph induced by B (αi; rαi

) has
diameter at most 2, almost surely. Clearly, if P (W ∈ B (αi; rαi

)) = 0, then there
are almost surely no vertices in that region, and moreover those regions do not
affect the diameter of G(W, n).

Now consider two regions Ri = B (αi; rαi
) and Rj = B

(
αj ; rαj

)
occurring

with positive probability. There is a naturally defined probability measure on
Ri ×Rj . Furthermore, since P

(
WT

i Wj = 0
)

= 0, there exist ε̂, δ̂ > 0 such that

P
(
WT

i Wj > δ̂ | Wi ∈ Ri,Wj ∈ Rj

)
> ε̂. But, since δ̂ and ε̂ are independent of

n, and since Ri and Rj almost surely contain an infinite number of vertices;
there is almost surely an edge between the regions. Now given vertices u ∈ Ri

and v ∈ Rj , there is almost surely an edge e between Ri and Rj , a path of
length 2 from u to e, and a path of length 2 from e to v. Thus, for any pair of
vertices in A there is almost surely a path of length at most 5 between them.
But A asymptotically contains (1 − δ)n vertices, and since δ was arbitrary, A
contains an arbitrarily large fraction of the vertices.



4 Clustering

In this section, we examine the clustering of G(W, n) and
−→
G(X,Y, n) and find

that except in the case of constant random variables, the presence clustering is
independent of the random variables. In order to show the clustering results we
need the following convexity result, which will allow the use of Jensen’s Inequality
in the proof of Theorem 2.

Lemma 2. Let a, b ∈ IRd. Let D ⊆ IRd be a region such that for all x ∈ D,
〈a, x〉 ∈ (0, 1) and 〈b, x〉 ∈ (0, 1). Then u : D −→ IR defined by x 7−→ 〈a, x〉 〈b, x〉
is a convex function of x.

Proof. Let F : (0, 1) × (0, 1) −→ IR be defined by (x, y) 7−→ xy. We note that

∇2F =
(

0 1
1 0

)
. This matrix, although not positive semi-definite, is positive

semidefinite over [0, 1]× [0, 1], and hence F (x, y) is convex over its domain [17].
Now note that since 〈a, x〉 is a real inner product, for any λ ∈ [0, 1] and x, y ∈ D,
〈a, λx + (1− λ)y〉 = λ 〈a, x〉+ (1− λ) 〈a, y〉. Thus 〈a, x〉 is a convex function in
x and similarly for 〈b, x〉. Thus u(x) = F (〈a, x〉 , 〈b, x〉) is the composition of
convex functions and hence is convex.

Theorem 2. Let Wv,Ww,Wu, Xu, Xv, Xw, Yu, Yv, Yw be independent random
variables distributed over IRd, not necessarily identically distributed, such that
〈Wi,Wj〉 and 〈Xi, Yj〉 satisfy the inner product condition for all i 6= j . For the
undirected graph where each edge {i, j} is present with probability 〈Wi,Wj〉, we
have that

P (u ∼ v | u ∼ v, v ∼ w) ≥ P (u ∼ v) . (5)

Now consider the random directed graph where each arc i → j is present, inde-
pendently, with probability 〈Xi, Yj〉. Then we have that

1. P (u → w | u → v, v → w) ≥ P (u → w),
2. P (u → w | u → v, w → v) ≥ P (u → w),
3. P (u → w | v → u, v → w) ≥ P (u → w), and
4. P (u → w | w → v, v → u) = P (u → w).

As an immediate corollary, we get that for any set of vertices u, v and w in
G(W, n), we get P (u ∼ v | u ∼ v, v ∼ w) ≥ P (u ∼ v) and for any set of vertices
u, v and w in

−→
G(X,Y, n)

1. P (u → w | u → v, v → w) ≥ P (u → w),
2. P (u → w | u → v, w → v) ≥ P (u → w),
3. P (u → w | v → u, v → w) ≥ P (u → w), and
4. P (u → w | w → v, v → u) = P (u → w) .

Note that in G(W, n), equality holds bounds on clustering if and only if W is a
constant random variable.



5 Degree Distribution

We derive, in this section, a set of natural formulas for the degree distributions of
both G(W, n) and

−→
G(X,Y, n). In Sect. 5.1, we discuss the application of these

formulas to the construction of specific random models meeting desired degree
sequence considerations.

Proposition 1. Let G = G(W, n) where W satisfies the inner product condi-
tion and let D =

−→
G(X,Y, n) where X and Y are distributions over IRd where

(X,Y) satisfies the inner product condition. Then, for a vertex w ∈ V (G)

P (deg(w) = k) =
∫ (

n− 1
k

)
〈E [W] ,W 〉k (1− 〈E [W] ,W 〉)n−k−1

dW. (6)

Furthermore, for a vertex v ∈ V (D)

P
(
deg+(v) = k

)
=

∫ (
n− 1

k

)
〈E [X] , Y 〉k (1− 〈E [X] , Y 〉)n−1−k

dY (7)

P
(
deg−(v) = k

)
=

∫ (
n− 1

k

)
〈E [Y] , X〉k (1− 〈E [Y] , X〉)n−1−k

dX . (8)

This leads to an immediate result on the density of edges in G(W, n) and
−→
G(X,Y, n).

Corollary 1. Let G = G(W, n) where W satisfies inner product condition and
let D =

−→
G(X,Y, n) where X and Y are distributions over IRd where (X,Y)

satisfies the inner product condition. Then E [|E(G)|] =
(
n
2

)
〈E [W] , E [W]〉 and

E [|E(D)|] = n(n− 1) 〈E [X] , E [Y]〉.

This implies that the edge density is Ω
(
n2

)
, contrary to conventional wis-

dom regarding complex networks. However we feel that this trade off is accept-
able in practice for several reasons. The first being that 〈E [W] , E [W]〉 and
〈E [X] , E [Y]〉 are typically small. Furthermore, although the results regarding
the diameter of the graph would not hold, one could consider X and Y as func-
tions of n and introduce sparsity in that manner. We also note that, particularly
for the world wide web, gene-protein networks, and the Internet, it is widely
accepted that empirical studies are not capturing all the edges present. Combine
this fact with recent work showing that the incompleteness can severely skew
some statistics of the data [4, 5], and it is plausible that one or more of these
networks is not truly sparse. In addition, the recent work of Leskovec, Kleinberg
and Faloutsos [14] has shown that for many social networks the number of edges
is becoming super-linear in the number of vertices as these networks evolve.

5.1 Sample Distributions

Although it is obvious that not every distribution W or pair of distributions
(X,Y) can lead to a power law, it is useful to discuss a few means of generating



power law degree distributions. We will focus on the directed model, as Kraetzl,
Nickel and Scheinerman have already shown one manner in which to achieve a
power law degree distribution for the undirected model [1].

It is natural to consider directed versions of complex network where the in-
degrees are distributed as a power law, while the out-degrees tend to be more
concentrated, in order to capture situations where the for physical reasons the
the out-degree is limited. Thus since we know that the Erdős-Rényi graph model
tends to produce a concentrated degree sequence and further if each component
is independently distributed as 1√

d
Uα(0, 1) in the undirected random dot product

graph model tends to produce a power law, it is natural to attempt to emulate
these two in the directed model. Thus, taking each component of X to be in-
dependently distributed as 1√

d
U(0, 1) (that is, having low variance, similarly to

the Erős-Rényi model) and each component of X to be 1√
d
Uα(0, 1) (and thus

having high variance), with α = 16, d = 5, n = 10000, and with 200 trials,
yields the average degree distributions shown in Fig. 5.1. Note that this roughly
models the desired behavior, in that the out-degree is strongly clustered around
a single value and the in-degrees are distributed as a power-law. Further empir-
ical refinement can lead to a closer approximation, and thus through repeated
simulation and tuning it is reasonable to assume that this degree distribution
and others like it, can be well approximated.

We now note that for any orthonormal matrix Q and any non-zero constant
c,
−→
G(X,Y, n) =

−→
G(cQX, 1

cQY, n). Thus we may assume that

1. 〈E [X] , e1〉 = 〈E [Y] , e1〉 =
√
〈E [X] , E [Y]〉,

2. 〈E [X] , e2〉 ≥ 0,
3. 〈E [Y] , e2〉 = 0, and
4. 〈E [X] , ei〉 = 〈E [Y] , ei〉 = 0 for i > 2.

In particular, combining these observations with (7) and (8), we obtain moments
for some components of X and Y if

−→
G(X,Y, n) satisfies a given degree distri-

bution. However, these moments do not fully characterize X and Y, but rather
limit the space of feasible distributions.

Perhaps more useful from a modeling point of view is the possibility of using
Kernel Density Estimators of Hörmann and Leydold [18] to develop estimated
distributions for (X,Y). In particular, given a graph G and a vector {Vi} for
each vertex so that G is “generated” by {Vi} under the random dot product
graph model, Kernel Density Estimation provides a means to rapidly generate
approximate samples from the sample distribution. (For more details on extract-
ing vectors from a given graph see [19–21].) Thus using {Vi} it is theoretically
possible to generate a random graph that “looks-like” G.

6 On the Nature of Bad Cuts

In light of the work of Flaxman, Frieze and Vera which showed that the geo-
metric preferential attachment graph has bad cuts that are due to the geometry
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Fig. 1. average degree sequences for given directed random dot product graph

of the underling space [11], it is natural to consider whether the random dot
product graphs exhibit similar behavior. In this section we characterize the con-
ductance of the geometric cuts in the undirected random dot product graph
model. Specifically, we show that any bad cuts have no semantic content. That
is, if low conductance cuts exist they are essentially non-geometric.

Before discussing the nature of the geometric cuts in G(W, n) we first need
some preliminary definitions. For any region R we will abuse notation and re-
fer to the set of vertices whose vectors are contained in the region as R. We
will also, for notational convenience, denote by WR the expectation of W re-
stricted to R for any W-measurable set R. Using notation standard from con-
ductance we will denote by Vol(R) the sum of the degrees for all vertices in R
and by C(R,R) the number of edges crossing the cut (R,R). Finally, we also
denote by P (R) the probability that a random variable distributed as W lies
within the region R. The conductance of the cut (R,R), ΦR(G(W, n)), is defined
as C(R,R)/ min

{
VolR,VolR

}
. With these definitions and a multidimensional



generalization of the Chernoff Bound [22], we have the following results on the
nature of geometric cuts in G(W, n).

Theorem 3. Let R be a fixed subset of IRd and let W be a distribution on IRd

that satisfies the inner product condition. Then almost surely

lim
n→∞

ΦR(G(W, n)) ≥
P

(
R

)
〈WR,WR〉

〈WR, E [W]〉
, (9)

when P (R) ‖WR‖2 ≤ P
(
R

)
‖WR‖

2.

This results establishes that any fixed region does not induce a bad cut.
However it leaves open the possibility that there is some sequence of regions
giving arbitrarily small conductance. That is, it may be possible that for an
arbitrary c > 0 there is some region Rc such that the conductance induced by
the cut (Rc, Rc) is constant but less than c. In fact, by using the inner product
condition we may show the following result:

Theorem 4. For a fixed distribution W satisfying the inner product condition,
infR limn→∞ ΦR(G(W, n)) is bounded below, where the infimum is taken over
W-measurable sets R.

By combining the results of Theorem 3 and Theorem 4, we conclude that
if W satisfies the inner product condition there is some α > 0, depending only
on W, such that for any region R ⊆ IRd, limn→∞ ΦR(G(W, n)) > α, with high
probability. Specifically, any fixed partition (R,R) of IRd has constant conduc-
tance independent of (R,R). Thus, in contrast to the work of Flaxman, Frieze
and Vera, where they showed that the geometric preferential attachment model
has bad cuts induced entirely by the geometry, if the random dot product graph
model has bad cuts they are entirely non-geometric. This does, however, leave
open the question of what happens for non-fixed geometric regions and non-
geometric partitions. Although we believe that the conductance of the random
dot product graph model is asymptotically constant, the slow rate of conver-
gence of this result leaves open the possibility that for every n there is a positive
probability that some region has conductance smaller than α. Furthermore, since
this result is inherently geometric, it says little about the case where W is not
a continuous distribution. For instance, if W contains a point mass, then there
is no way to geometrically place vertices generated by a point mass on oppos-
ing sides of a partition, whereas a partition of the vertices can clearly separate
those vertices. Thus, fully resolving the conductance of the random dot product
graph model will require a fundamental non-geometric insight into the structure
of these graphs as in the work of Mihail, et al. [23].

7 Future Work

There are some natural questions that this work brings up. Perhaps the most
pressing is the development of a sparse, or preferably, a variable density analogue



of both G(W, n) and
−→
G(X,Y, n). Although, as we noted above, the presence of

Ω
(
n2

)
edges is not as major an objection as it once was for social networks, it

still limits the models’ general applicability. Thus a natural sparse generalization
would broaden the applicability of these models. We have positive results in a
preliminary work in this direction [24].

Also, given that the result that reinvigorated the study of social networks
was Milgram’s experimental result on the navigability of the “real world” social
network, [25, 26], it is reasonable to consider under what conditions short paths
can be found in G(W, n). Kleinberg’s result on the navigation of the grid with
power-law shortcuts showed that navigation is sensitive to parameters of the
model [27], however we feel that the additional semantic information in G(W, n)
will allow navigation under more general conditions.

Finally, from a simulation point of view, it would be desirable to have a means
of rapidly generating samples from G(W, n) or

−→
G(X,Y, n). Kraetzl, Nickel, and

Scheinerman [1] discuss a thresholding modification of the natural means of gen-
eration that will produce an approximate sample. However, it is not immediately
obvious how much the loss of edges due to thresholding will affect any given prop-
erty of the sample graph. Thus, for serious simulation purposes, some means of
estimating the effect of the thresholding or a clever way of reducing the overall
computation time would seem to be necessary.
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