1. (5 points) Given that $\int \sin ^{n}(t)=-\frac{\sin ^{n-1}(t)}{n} \cos (t)+\frac{n-1}{n} \int \sin ^{n-2}(t) d t$ find $\int_{0}^{\pi} \sin ^{3}(3 t) d t$.

Solution: First note that letting $w=3 t$, then $d w=3 d t$.
Thus $\int_{0}^{\pi} \sin ^{3}(3 t) d t=\frac{1}{3} \int_{0}^{3 \pi} \sin ^{3}(w) d w$. Now

$$
\begin{aligned}
\int \sin ^{3}(w) d w & =-\frac{\sin ^{2}(w)}{3} \cos (w)+\frac{2}{3} \int \sin (w) d w \\
& =-\frac{1}{3} \sin ^{2}(w) \cos (w)+\frac{2}{3}(-\cos (w))+C
\end{aligned}
$$

Thus $\int_{0}^{3 \pi} \sin (w) d w=-\frac{1}{3} \sin ^{2}(3 \pi) \cos (3 \pi)-\frac{2}{3} \cos (3 \pi)+\frac{1}{3} \sin ^{2}(0) \cos (0)+\frac{2}{3} \cos (0)=\frac{2}{3}+\frac{2}{3}=$ $-\frac{4}{3}$. Thus $\int_{0}^{\pi} \sin ^{3}(3 t) d t=\frac{4}{9}$.
2. (5 points) Find $\frac{d}{d t} \int_{t^{2}}^{\sin (t)} e^{-x^{2}} d x$.

Solution: By the fundamental theorem of calculus, $e^{-x^{2}}$ has some anti-derivative $F(x)$. Thus $\int_{t^{2}}^{\sin (t)} e^{-x^{2}} d x=F(\sin (t))-F\left(t^{2}\right)$. Taking the derivative with respect to t, we get

$$
F^{\prime}(\sin (t)) \cos (t)-F^{\prime}\left(t^{2}\right) 2 t=\cos (t) e^{-\sin ^{2}(t)}-2 t e^{-t^{4}}
$$

3. (5 points) Find $\int_{0}^{1} e^{2 t} \cos (2 t) d t$.

Solution: We first find $\int e^{2 t} \cos (2 t) d t$. Setting $u=\cos (2 t)$ and $v^{\prime}=e^{2 t}$ we have that $u^{\prime}=-2 \sin (2 t)$ and $v=\frac{1}{2} e^{2 t}$. Thus

$$
\int e^{2 t} \cos (2 t) d t=\frac{1}{2} e^{2 t} \cos (2 t)-\int-e^{2 t} \sin (2 t) d t .
$$

Performing integration by parts again with $u=\sin (2 t)$ and $v^{\prime}=e^{2 t}$, we have $u^{\prime}=2 \cos (2 t)$ and $v=\frac{1}{2} e^{2 t}$. Thus

$$
\int e^{2 t} \sin (2 t) d t=\frac{1}{2} e^{2 t} \sin (2 t)-\int \cos (2 t) e^{2 t} d t .
$$

Combining with the previous integration by parts we have

$$
\int e^{2 t} \cos (2 t) d t=\frac{1}{2} e^{2 t} \cos (2 t)+\frac{1}{2} e^{2 t} \sin (2 t)-\int e^{2 t} \cos (2 t) d t .
$$

Solving for the integral we get that

$$
\int e^{2 t} \cos (2 t) d t=\frac{e^{2 t}}{4}(\cos (2 t)+\sin (2 t)+C)
$$

Thus $\int_{0}^{1} e^{2 t} \cos (2 t) d t=\frac{e^{2}}{4}(\cos (2)+\sin (2))-\frac{1}{4}$.
4. (5 points) Approximate $\int_{-1}^{1} a x^{2}+b x+c d x$ using two intervals and either the Trapezoidal Rule or the Midpoint Rule. Compare your result with the actual answer, is it an over estimate or underestimate? (Hint: This will depend on the value of a.)

Solution: First

$$
\begin{aligned}
\int_{-1}^{1} a x^{2}+b x+c d x & =\left[\frac{a}{3} x^{3}+\frac{b}{2} x^{2}+c x\right]_{x=-1}^{1} \\
& =\frac{a}{3}+\frac{b}{2}+c-\left(-\frac{a}{3}+\frac{b}{2}-c\right) \\
& =\frac{2 a}{3}+2 c .
\end{aligned}
$$

Using the trapeziodal rule with two intervals the estimate would be

$$
\begin{aligned}
\frac{f(-1)+f(0)}{2}(0-(-1))+\frac{f(0)+f(1)}{2}(1-0) & =\frac{1}{2} f(-1)+f(0)+\frac{1}{2} f(1) \\
& =\frac{1}{2}(a-b+c)+c+\frac{1}{2}(a+b+c)=a+2 c .
\end{aligned}
$$

Thus the difference between the trapeziodal rule and the actual answer is $a+2 c-\left(\frac{2}{3} a+c\right)=$ $\frac{1}{3} a$. Thus the trapezoidal rule is an overestimate if $a>0$, an underestimate if $a<0$ and exact if $a=0$.
5. (5 points) Find

$$
\int \frac{3 x^{3}-9 x^{2}+8 x+12}{\left(x^{2}+4\right)(x-2)^{2}} d x
$$

Solution: We first do the partial fraction decomposition. That is, we find A, B, C, D so that

$$
\frac{3 x^{3}-9 x^{2}+8 x+12}{\left(x^{2}+4\right)(x-2)^{2}}=\frac{A}{(x-2)}+\frac{B}{(x-2)^{2}}+\frac{C x+D}{x^{2}+4} .
$$

Then we get

$$
\begin{aligned}
3 x^{3}-9 x^{2}+8 x+12 & =A(x-2)\left(x^{2}+4\right)+B\left(x^{2}+4\right)+(C X+D)(x-2)^{2} \\
& =(A+C) x^{3}+(-2 A+B-2 C+D) x^{2}+(4 A+4 C-4 D) x+(-8 A+4 B+4 D) .
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
A+C & =3 \\
-2 A+B-4 C+D & =-9 \\
4 A+4 C-4 D & =8 \\
-8 A+4 B+4 D & =12
\end{aligned}
$$

which has solution $A=0, B=2, C=3$, and $D=1$. Thus

$$
\frac{3 x^{3}-9 x^{2}+8 x+12}{\left(x^{2}+4\right)(x-2)^{2}}=\frac{2}{(x-2)^{2}}+\frac{3 x}{x^{2}+4}+\frac{1}{x^{2}+4}
$$

and

$$
\int \frac{3 x^{3}-9 x^{2}+8 x+12}{\left(x^{2}+4\right)(x-2)^{2}} d x=\frac{-2}{(x-2)}+\frac{3}{2} \ln \left(x^{2}+4\right)+\frac{1}{2} \arctan \left(\frac{x}{2}\right)+C .
$$

6. (5 points) Find $\int \frac{4}{y^{2} \sqrt{9-y^{2}}} d y$. (Hint: It may be helfpul to use $\int \csc ^{2}(\theta) d \theta=-\cot (\theta)+C$ or $\int \sec ^{2}(\theta) d \theta=\tan (\theta)+C$.)

Solution: Since we have a difference of squares, we use trig. substitution with a triangle that has hypotenuse 3 and one leg y. We choose to put θ so that $\sin (\theta)=\frac{y}{3}$. Thus $\cos (\theta) d \theta=\frac{1}{3} d y$ and $\cos (\theta)=\frac{\sqrt{9-y^{2}}}{3}$. Using this substitution we have

$$
\int \frac{4}{y^{2} \sqrt{9-y^{2}}} d y=\int 4 \frac{1}{y^{2}} \frac{1}{\sqrt{9-y^{2}}} d y=\int 4 \frac{1}{9 \sin ^{2}(\theta)} \frac{1}{3 \cos (\theta)} 3 \cos (\theta) d \theta=\frac{4}{9} \int \csc ^{2}(\theta) d \theta
$$

Using the provided integral, this is $-\frac{4}{9} \cot (\theta)+C=-\frac{4}{9} \cot \left(\arcsin \left(\frac{y}{3}\right)\right)+C=-\frac{4}{9} \frac{\sqrt{9-y^{2}}}{y}$.
7. (5 points) Show that $\int_{3}^{5} 2 \ln \left(s^{2}+s\right) e^{-s^{2}} d s=\int_{9}^{25} \frac{\ln (t+\sqrt{t})}{\sqrt{t}} e^{-t} d t$.

Solution: Comparing the two integrals we see that one has $e^{-s^{2}}$ and one has a e^{-t}, so we will try the substitution $s^{2}=t$. Thus $2 s d s=d t$ and if $t=9$ then $s=3$ and if $t=25$ then $s=5$. Thus

$$
\int_{9}^{25} \frac{\ln (t+\sqrt{t})}{\sqrt{t}} e^{-t} d t=\int_{3}^{5} \frac{\ln \left(s^{2}+\sqrt{s^{2}}\right)}{\sqrt{s^{2}}} e^{-s^{2}} 2 s d s=\int_{3}^{5} 2 \ln \left(s^{2}+s\right) e^{-s^{2}} d s
$$

and the two integrals are equal.

