1. (5 points) Consider two vectors $\mathbf{v}=\langle 4,2,-1\rangle$ and $\mathbf{w}=\langle 0,1,3\rangle$. If θ is the angle between \mathbf{w} and \mathbf{v}, find $\sin (\theta)$ and $\cos (\theta)$.

Solution: First we note that $\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{v}\| \cos (\theta)$ and that $\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin (\theta)$. Thus, to calculate $\cos (\theta)$ and $\sin (\theta)$, we calculate

$$
\begin{aligned}
&\|\mathbf{v}\|=\sqrt{4^{2}+2^{2}+(-1)^{2}}=\sqrt{21} \\
&\|\mathbf{w}\|=\sqrt{0^{2}+1^{2}+3^{2}}=\sqrt{10} \\
& \mathbf{v} \cdot \mathbf{w}=0 \cdot 4+2 \cdot 1+(-1) \cdot 3=-1 \\
& \mathbf{v} \times \mathbf{w}=\operatorname{det}\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
4 & 2 & -1 \\
0 & 1 & 3
\end{array}\right|=(2 \cdot 3-1 \cdot(-1)) \mathbf{i}-(4 \cdot 3-0 \cdot(-1)) \mathbf{j}+(4 \cdot 1-0 \cdot 2) \mathbf{k}=\langle 7,12,4\rangle \\
&\|\mathbf{v} \times \mathbf{w}\|=\sqrt{7^{2}+12^{2}+4^{2}}=209 . \\
& \text { Thus } \cos (\theta)=\frac{-1}{\sqrt{210}} \text { and } \sin (\theta)=\frac{\sqrt{209}}{\sqrt{210}} .
\end{aligned}
$$

2. (5 points) Consider the vector valued function $\mathbf{r}(t)=e^{t^{2}-4} \mathbf{i}+t^{3} \mathbf{k}$. Does the tangent line at $t=2$ pass through $(-3,0,2)$?

Solution: The tangent vector is $\mathbf{r}^{\prime}(t)=\left\langle 2 t e^{t^{2}-4}, 0,3 t^{2}\right\rangle$ and so $\mathbf{r}^{\prime}(2)=\langle 4,0,12\rangle$. Since $\mathbf{r}(2)=\langle 1,0,8\rangle$, the tangent line is $\ell(t)=\langle 1+4 t, 0,8+12 t\rangle$. If the tangent line passed through $(3,0,2)$ then $1+4 t=-3$ and $t=-1$. But $\ell(-1)=\langle-3,0,-4\rangle$ and so the tangent line does not pass through $(-3,0,2)$.
3. (5 points) Consider the plane defined by the equation $x-3 y+2 z=4$ and the plane defined by the normal vector $\langle 2,0,1\rangle$ through the point $(4,0,0)$. Find the intersection of the two planes. (Hint: the point $(4,0,0)$ is on both planes.)

Solution: The normal vector for the first plane is $\langle 1,-3,2\rangle$, the two planes are note parallel, so their intersection is a line. Since

$$
\begin{aligned}
\langle 1,-3,2\rangle \times\langle 2,0,1\rangle & =\operatorname{det}\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -3 & 2 \\
2 & 0 & 1
\end{array}\right| \\
& =(-3 \cdot 1-0 \cdot 2) \mathbf{i}-(1 \cdot 1-2 \cdot 2) \mathbf{j}+(1 \cdot 0-2 \cdot(-3)) \mathbf{k} \\
& =\langle-3,3,6\rangle,
\end{aligned}
$$

the vector $\langle-3,3,6\rangle$ lies in both planes. Then, since the point $(4,0,0)$ lies in both planes, the line of their intersection is defined by $\ell(t)=\langle 4-3 t, 3 t, 6 t\rangle$.
4. (5 points) Show that the circumference of a circle of radius R is $2 \pi R$. (Hint: Choose a "nice" parameterization of the circle and calculate the arclength)

Solution: We parameterize the circle via the vector valued function $\mathbf{r}(t)=\langle R \cos (t), R \sin (t)\rangle$. Then $\mathbf{r}^{\prime}(t)=\langle-R \sin (t), R \cos (t)\rangle$ and $\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{R^{2} \sin (t)+R^{2} \cos (t)}=R$. The arclength is then $\int_{0}^{2 \pi}\left\|\mathbf{r}^{\prime}(t)\right\| d t=\int_{0}^{2 \pi} R d t=2 \pi R$ and so the circle has circumference $2 \pi R$.
5. (5 points) Let $\mathbf{r}(t)=\left\langle e^{-2 t}, t^{3}+4 t^{2}-2\right\rangle$. Decompose the acceleration vector into $a_{T} T(t)+$ $a_{N} N(t)$ at $t=0$.

Solution: We first calculate

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\left\langle-2 e^{-2 t}, 3 t^{2}+8 t\right\rangle \\
\mathbf{a}(t) & =\left\langle 4 e^{-2 t}, 6 t+8\right\rangle \\
\mathbf{v}(0) & =\langle-2,0\rangle \\
\|\mathbf{r}(0)\| & =2 \\
T(0) & =\frac{\mathbf{v}(0)}{\|\mathbf{v}(0)\|}=\langle-1,0\rangle \\
\mathbf{a}(0) & =\langle 4,8\rangle .
\end{aligned}
$$

Then $a_{T}=a(0) \cdot T(0)=4 \cdot(-1)+0 \cdot 8=-4$. Thus $a_{N} N(0)=a(0)-a_{T} T(0)=\langle 0,8\rangle$. Since $N(0)$ is a unit vector, $N(0)=\langle 0,1\rangle$ and $a_{N}=8$.
6. (5 points) Suppose $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$. Explain why $\mathbf{w} \cdot(\mathbf{u} \times \mathbf{w})=0$.

Solution: If \mathbf{u} and \mathbf{w} are parallel, then $\mathbf{u} \times \mathbf{w}=\mathbf{0}$ and so $\mathbf{w} \cdot(\mathbf{u} \times \mathbf{w})=\mathbf{w} \cdot \mathbf{0}=0$. If \mathbf{u} and \mathbf{w} are not parallel, then the resulting vector is orthogonal to \mathbf{u} and \mathbf{w}. But then since \mathbf{w} and $\mathbf{u} \times \mathbf{w}$ are orthogonal, their dot product is 0 .
\qquad

