1. (20 points) Consider the differential equation

$$
y^{\prime}=(1-y)(y+2)(y-3) .
$$

Plot a representative set of solutions curves. Be sure to draw any equilibrium solutions and label their stability.

Solution: Since $y^{\prime}=0$ when $y=-2,1,3$ these are the equilibrium solutions. When $y<-2, y^{\prime}>0$, when $-2<y<1, y^{\prime}<0$, when $1<y<3, y^{\prime}>0$ and when $y>3 y^{\prime}<0$. Thus $y=-2$ is stable, $y=1$ is unstable, and $y=3$ is stable.

Let r_{1} be the local minimum between -2 and 1 and let r_{2} be the local minimum between 1 and 3. The solution is concave up on $\left(-2, r_{1}\right) \cup\left(1, r_{2}\right) \cup(3, \infty)$ and concave down on $(-\infty,-2) \cup\left(r_{1}, 1\right) \cup\left(r_{2}, 3\right)$.

\qquad
2. (20 points) A tank starts off with 200 gallons of water and 25 pounds of salt in it. A fresh water solutions is pumped into the tank at a rate of $\sin (t)+5$ gallons per minute, the tank is being emptied at a rate of $5-\sin (t)$ gallons per minute. Set up, BUT DO NOT SOLVE, the differential equation for the pounds of salt in the tank at time t.

Solution: Let $P(t)$ be the pounds of salt in the tank at time t and let $G(t)$ be the gallons of water in the tank at time t. Note $P(0)=25$ and $G(0)=200$. Since there is $\sin (t)+5$ gallons being pumped into the tank and $5-\sin (t)$ being pumped out,

$$
G(t)-G(0)=\int_{0}^{t} \sin (s)+5-(5-\sin (s)) d s=\int_{0}^{t} 2 \sin (s) d s=-\left.2 \cos (s)\right|_{s=0} ^{t}=2-2 \cos (t) .
$$

Thus $G(t)=202-2 \cos (t)$. Now the salt is coming in at a rate of 0 since it is a freshwater solution and it is leaving at $\frac{P(t)}{G(t)}(5-\sin (t))$ thus $P(t)$ satisfies

$$
\frac{d P}{d t}=\frac{\sin (t)-5}{202-2 \cos (t)} P(t)
$$

with $P(0)=25$.
3. Find the general REAL solutions for the following differential equations.
(a) (5 points) $y^{\prime \prime}-6 y^{\prime}+13 y=0$
(b) (5 points) $y^{\prime \prime}-5 y^{\prime}+4 y=0$
(c) (5 points) $y^{\prime \prime}+2 y^{\prime}+y=0$

Solution:

(a) The characteristic equation for $y^{\prime \prime}-6 y^{\prime}+13 y=0$ is $r^{2}-6 r+13=0$ which has roots $\frac{6 \pm \sqrt{36-4 * 13}}{2}=3 \pm 2 i$. Thus the general form of the solution is $e^{3 t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)$.
(b) The characteristic equation for $y^{\prime \prime}-5 y^{\prime}+4 y=0$ is $r^{2}-5 r+4=0$ which has roots 4 and 1 . Thus the general form of the solution is $c_{1} e^{4 t}+c_{2} e^{t}$.
(c) The characteristic equation for $y^{\prime \prime}+2 y^{\prime}+y=0$ is $r^{2}+2 r+1=0$ which has roots $-1,-1$. Thus the general form of the solution is $c_{1} e^{-t}+c_{2} t e^{-t}$.
4. (10 points) Find an appropriate integrating factor and solve $y^{\prime}-2 t y=e^{t^{2}+t}$ with the initial condition that $y(0)=1$.

Solution: Since y is multiplied by $-2 t$ the integrating factor should be $e^{\int-2 t d t}=e^{-t^{2}}$. Multiplying through we have that $e^{-t^{2}} y^{\prime}-2 t e^{-t^{2}}=e^{t}$. Thus, integrating we have $e^{-t^{2}} y=$ $e^{t}+C$. Since $y(0)=1$, we have $C=0$ and $y=e^{t+t^{2}}$.
5. (10 points) Find a general solution to the differential equation $y^{\prime}=\frac{e^{t}}{\cos (y)}$.

Solution: We note that is a separable differential equation, corresponding to $\cos (y) d y=$ $e^{t} d t$. Integrating, we get $\sin (y)=e^{t}+C$ which implicitly defines the solution as $\sin (y)-e^{t}=$ C.
6. (10 points) Suppose that $y_{1}=\cos (2 t)$ and $y_{2}=\sin (5 t)-4 t$ satisfy the differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, find a solution $y(t)$ with $y(0)=4$ and $y^{\prime}(0)=-2$. (Hint: $y_{1}(0)=$ $1, y_{1}^{\prime}(0)=0, y_{2}(0)=0, y_{2}^{\prime}(0)=1$.)

Solution: Since $y_{1}(0)=1, y_{1}^{\prime}(0)=0, y_{2}(0)=0$, and $y_{2}^{\prime}(0)=1, y_{1}$ and y_{2} form a fundamental set of solutions and thus the solution through the initial conditions is $4 \cos (2 t)-2(\sin (5 t)-4 t)$.
7. (15 points) Use the integrating factor $x \cos (x)$ to solve the following differential equation,

$$
\frac{2(y+1)}{\cos (x)}+\frac{e^{y}+1}{x}+\left(\frac{x}{\cos (x)}+\frac{e^{y} \tan (x)}{x}\right) y^{\prime}=0 .
$$

Solution: Multiplying through by the integrating factor we have that

$$
2 x(y+1)+\left(e^{y}+1\right) \cos (x)+\left(x^{2}+e^{y} \sin (x)\right) y^{\prime}=0
$$

Let $M(x, y)=2 x(y+1)+\left(e^{y}+1\right) \cos (x)$ and $N(x, y)=x^{2}+e^{y} \sin (x)$. Note that $M_{y}(x, y)=$ $2 x+\cos (x) e^{y}$ and $N_{x}(x, y)=2 x+\cos (x) e^{y}$ and thus $M_{y}(x, y)=N_{x}(x, y)$ and so the resulting equation is exact and so the solution is implicitly defined by $\Psi(x, y)=C$, where $\Psi_{x}=M(x, y)$ and $\Psi_{y}=N(x, y)$. Thus

$$
\Psi(x, y)=\int 2 x(y+1)+\left(e^{y}+1\right) \cos (x) d x=x^{2}(y+1)+\left(e^{y}+1\right) \sin (x)+h(y) .
$$

But $N(x, y)=\Psi_{y}(x, y)=x^{2}+e^{y} \sin (x)+h^{\prime}(y)$, implying that $h^{\prime}(y)=0$ and so $\Psi(x, y)=$ $x^{2}(y+1)+\left(e^{y}+1\right) \sin (x)$ and the differential equation is solved implicitly by $x^{2}(y+1)+$ $\left(e^{y}+1\right) \sin (x)=C$.

