1. (15 points) Find all the eigenvalues (with multiplicity) and the eigenvector(s) associated with the largest eigenvalue for the following matrix.

$$
\left[\begin{array}{ccc}
-6 & 3 & -6 \\
2 & -1 & 2 \\
4 & -2 & 4
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
-6-\lambda & 3 & -6 \\
2 & -1-\lambda & 2 \\
4 & -2 & 4-\lambda
\end{array}\right) \\
& =(-6-\lambda) \operatorname{det}\left(\begin{array}{cc}
-1-\lambda & 2 \\
-2 & 4-\lambda
\end{array}\right)-3 \operatorname{det}\left(\begin{array}{cc}
2 & 2 \\
4 & 4-\lambda
\end{array}\right)+(-6) \operatorname{det}\left(\begin{array}{cc}
2 & -1-\lambda \\
4 & -2
\end{array}\right) \\
& =(-6-\lambda)(-(1+\lambda)(4-\lambda)+4)-3(8-2 \lambda-8)-6(-4+4+4 \lambda) \\
& =(-6-\lambda)\left(-4-3 \lambda+\lambda^{2}+4\right)+6 \lambda-24 \lambda \\
& =\lambda((-6-\lambda)(\lambda-3)-18) \\
& =\lambda\left(18-3 \lambda-\lambda^{2}-18\right) \\
& =-\lambda^{2}(3+\lambda) .
\end{aligned}
$$

Thus the eigenvalues are $-3,0$, and 0 , with 0 being the largest. Now reducing the matrix associated with the eigenvalue 0 , we get

$$
\left[\begin{array}{ccc}
-6 & 3 & -6 \\
2 & -1 & 2 \\
4 & -2 & 4
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
0 & 0 & 0 \\
2 & -1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

Thus, two linearly independent eigenvectors associated with 0 are

$$
\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] .
$$

2. (20 points) The matrix A has the eigenvalues $3 \pm 2 i,-1$, and 2 . The eigenvector are

$$
\left[\begin{array}{c}
-1 \\
-4 \\
2 \\
0
\end{array}\right] \pm i\left[\begin{array}{c}
0 \\
-1 \\
0 \\
2
\end{array}\right], \quad\left[\begin{array}{l}
2 \\
0 \\
3 \\
0
\end{array}\right], \text { and }\left[\begin{array}{c}
-2 \\
1 \\
4 \\
-2
\end{array}\right],
$$

respectively. Write down the real solution to the differential equation $\mathrm{x}^{\prime}=A \mathrm{x}$ with

$$
\mathbf{x}(0)=\left[\begin{array}{c}
0 \\
3 \\
14 \\
-6
\end{array}\right] .
$$

Solution: The general form of the solution is

$$
c_{1} e^{3 t}\left[\begin{array}{c}
-\cos (2 t) \\
-4 \cos (2 t)+\sin (2 t) \\
2 \cos (2 t) \\
-2 \sin (2 t)
\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{c}
-\sin (2 t) \\
-4 \sin (2 t)-\cos (2 t) \\
2 \sin (2 t) \\
2 \cos (2 t)
\end{array}\right]+c_{3}\left[\begin{array}{l}
2 \\
0 \\
3 \\
0
\end{array}\right] e^{-t}+c_{4}\left[\begin{array}{c}
-2 \\
1 \\
4 \\
-2
\end{array}\right] e^{2 t} .
$$

Thus we are looking for a solution to

$$
\left[\begin{array}{cccc}
-1 & 0 & 2 & -2 \\
-4 & -1 & 0 & 1 \\
2 & 0 & 3 & 4 \\
0 & 2 & 0 & -2
\end{array}\right] \overrightarrow{\mathbf{c}}=\left[\begin{array}{c}
0 \\
3 \\
14 \\
-6
\end{array}\right]
$$

Applying Gaussian elimination

$$
\left[\begin{array}{ccccc}
-1 & 0 & 2 & -2 & 0 \\
-4 & -1 & 0 & 1 & 3 \\
2 & 0 & 3 & 4 & 14 \\
0 & 2 & 0 & -2 & -6
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
-1 & 0 & 2 & -2 & 0 \\
0 & -1 & -8 & 9 & 3 \\
0 & 0 & 7 & 0 & 14 \\
0 & 2 & 0 & -2 & -6
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
-1 & 0 & 2 & -2 & 0 \\
0 & -1 & -8 & 9 & 3 \\
0 & 0 & 7 & 0 & 14 \\
0 & 0 & 0 & 16 & 0
\end{array}\right],
$$

and thus $c_{4}=0, c_{3}=2, c_{2}=-19, c_{1}=0$. The solution is then

$$
-19 e^{3 t}\left[\begin{array}{c}
-\sin (2 t) \\
-4 \sin (2 t)-\cos (2 t) \\
2 \sin (2 t) \\
2 \cos (2 t)
\end{array}\right]+2\left[\begin{array}{l}
2 \\
0 \\
3 \\
0
\end{array}\right] e^{-t}
$$

3. (20 points) Find the Laplace transform of y for the following differential equation

$$
3 y^{\prime \prime}+y^{\prime}-y=g(t), \quad y(0)=1, \quad y^{\prime}(0)=-2
$$

where

$$
g(t)= \begin{cases}0 & t \leq 3 \\ (t-3) / 6 & 3<t \leq 6 \\ e^{4(t-6)} \sin (2(t-6)) & 6<t\end{cases}
$$

Solution: First we note that $g(t)=\frac{t-3}{6}\left(u_{3}(t)-u_{6}(t)\right)+e^{4(t-6)} \sin (2(t-6)) u_{6}(t)=\frac{t-3}{6} u_{3}(t)+$ $\left(e^{4(t-6)} \sin (2(t-6))-\frac{t-6+3}{6}\right) u_{6}(t)$ and thus $\mathcal{L}(g(t))=\frac{e^{-3 s}}{6 s^{2}}+\frac{2 e^{-6 s}}{(s-4)^{2}+4}-\frac{e^{-6 s}}{6 s^{2}}+\frac{e^{-6 s}}{2 s}$. We also have $\mathcal{L}\left(3 y^{\prime \prime}+y^{\prime}-y\right)=3 s^{2} \mathcal{L}(y)-3 s y(0)-3 y^{\prime}(0)+s \mathcal{L}(y)-y(0)-\mathcal{L}(y)$. Combining these we have that

$$
\mathcal{L}(y)=\frac{e^{-3 s}-e^{-6 s}}{6 s^{2}\left(3 s^{2}+s-1\right)}+\frac{2 e^{-6 s}}{\left((s-4)^{2}+4\right)\left(3 s^{2}+s-1\right)}+\frac{e^{-6 s}}{2 s\left(3 s^{2}+s-1\right)}-\frac{3 s+5}{3 s^{2}+s-1} .
$$

4. (15 points) Given that $\mathcal{L}\{y\}=\frac{4 s^{2}+9}{s^{2}\left(s^{2}+9\right)}\left(e^{4 s}-e^{8 s}\right)$ find y.

Solution: Let $\frac{4 s^{2}+9}{s^{2}\left(s^{2}+9\right)}=\frac{A s+B}{s^{2}}+\frac{C s+D}{s^{2}+9}$, then $(A s+B)\left(s^{2}+9\right)+(C s+D) s^{2}=4 s^{2}+9$. Thus

$$
\begin{aligned}
& 0=A+C \\
& 4=B+D \\
& 0=9 A \\
& 9=9 B .
\end{aligned}
$$

Thus $B=1, A=0, D=3$ and $C=0$. Thus $\mathcal{L}(y)=\frac{3}{s^{2}+9}+\frac{1}{s^{2}}$ and $y=\sin (3 t)+t$.
5. (15 points) Consider the differential equation $y^{\prime \prime}+4 y^{\prime}+4 y=e^{3 t}+\sin 2 t$ which has a homogeneous solution of $c_{1} e^{-2 t}+c_{2} t e^{-2 t}$, set up, but do not solve, a system of linear equations to find the particular solution. (Hint: Use the method of undetermined coefficients.)

Solution: Based on the nonhomogeneous portion, we guess that the particular solution has the form $A e^{3 t}+B \cos (2 t)+C \sin (2 t)$, which has first derivative $3 A e^{3 t}-2 B \sin (2 t)+2 C \cos (2 t)$ and second derivative $9 A e^{3 t}-4 B \sin (2 t)-4 C \cos (2 t)$. Plugging into the differential equation we have

$$
25 A e^{3 t}-8 C \cos (2 t)-8 B \sin (2 t)=e^{3 t}+\sin (2 t) .
$$

Thus the desired system of equations is

$$
\begin{aligned}
25 A & =1 \\
-8 C & =0 \\
-8 B & =1
\end{aligned}
$$

6. (15 points) Given that $y(0)=3$ and $y^{\prime}(0)=-2$, find $y^{\prime \prime \prime}(0)$ for the solution to the differential equation

$$
4 y^{\prime \prime}+4 t^{2} y=\frac{1}{1-t}=\sum_{k=0}^{\infty} t^{k}
$$

(Hint: Find the series solution for the differntial equation about $t=0$)

Solution: Let $y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ and then $y^{\prime}(t)=\sum_{n=1}^{\infty} n a_{n} t^{n-1}, y^{\prime \prime}(t)=\sum_{n=2}^{\infty} n(n-$ 1) $a_{n} t^{n-2}$, and $y^{\prime \prime \prime}(t)=\sum_{n=3}^{\infty} n(n-1)(n-2) a_{n} t^{n-3}$. Thus $y^{\prime \prime \prime}(0)=6 a_{3}$. Now plug y into
the differential equation

$$
\begin{aligned}
4 \sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}+4 t^{2} \sum_{n=0}^{\infty} a_{n} t^{n} & =\sum_{n=0}^{\infty} t^{n} \\
\sum_{j=0}^{\infty} 4(j+2)(j+1) a_{j+2} t^{j}+\sum_{j=2}^{\infty} 4 a_{j-2} t^{j} & =\sum_{j=0}^{\infty} t^{j} \\
8 a_{2}+24 a_{3} t+\sum_{j=2}^{\infty}\left(4(j+2)(j+1) a_{j+2}+4 a_{j-2}\right) t^{j} & =\sum_{j=0}^{\infty} t^{j} .
\end{aligned}
$$

Thus $24 a_{3}=1$ and so $y^{\prime \prime \prime}(0)=\frac{1}{4}$.
\qquad

