1. (5 points) t and e^{t^2} are solutions to the differential equation y'' + p(t)y' + q(t)y = 0, show that they are fundamental solutions and use this work to determine p(t).

Solution: The Wronskian of t and e^{t^2} is $t \cdot 2te^{t^2} - 1 \cdot e^{t^2} = (2t^2 - 1)e^{t^2}$ which is non-zero for $t \neq \pm \frac{1}{\sqrt{2}}$, thus these form a fundamental solution on all intervals not including these points. To determine p(t), we note that

$$W = ce^{-\int p(t)}$$

(2t² - 1)e^{t²} = ce^{-\int p(t)}
ln((2t² - 1)e^{t²}) = ln(ce^{-\int p(t)})
ln(2t² - 1) + t² = ln(c) - \int p(t).

Taking the derivative of both sides with respect to t we get,

$$\frac{4t}{2t^2 - 1} + 2t = -p(t)$$

so $p(t) = \frac{4t}{1-2t^2} - 2t$.

Solution: We first consider

2. (5 points) Find all eigenvalues and the eigenvector corresponding to the smallest eigenvalue for

$$\begin{bmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

	$\lceil -\lambda \rceil$	2	1]
\det	2	$-\lambda$	1
	1	1	$1 - \lambda$

This is

$$\begin{split} (-\lambda)(-\lambda)(1-\lambda) + 2 \cdot 1 \cdot 1 + 1 \cdot 2 \cdot 1 - (1 \cdot (-\lambda)1) - (1 \cdot 1 \cdot (-\lambda))) - ((1-\lambda) \cdot 2 \cdot 2) \\ &= -\lambda^3 + \lambda^2 + 4 + \lambda + \lambda - 4 + 4\lambda \\ &= -\lambda^3 + \lambda^2 + 6\lambda. \end{split}$$

Thus the eigenvalues are -2, 0, and 3. The eigenvalue associated with -2 satisfies that $2v_1 + 2v_2 + v_3 = 0$, $2v_1 + 2v_2 + v_3 = 0$ and $v_1 + v_2 + 3v_3 = 0$. Subtracting twice the last equation from the first or second, we see that $-5v_3 = 0$ and so $v_3 = 0$. Then we $v_1 = -v_2$, so (1, -1, 0) is an eigenvector associated with the eigenvalue -2.

3. (5 points) Find the solution to the initial value problem $y'' + y' - 2y = 3e^t$ where y(0) = 0 and y'(0) = 0.

Name:_

Points earned:____

Solution: The characteristic equation for the associated homogeneous solution is $r^2 + r - 2 = 0$ which has roots r = 1, -2. Thus when using undetermined coefficients, the guess should have the form Ate^t . Which has first derivative $A(t+1)e^t$ and second derivative $A(t+2)e^t$. Substituting we want A so that

$$A(t+2)e^{t} + A(t+1)e^{t} - 2Ate^{t} = 3e^{t}$$

which yields A = 1. Thus the general form of the solution is $c_1e^{-2t} + c_2e^t + te^t$, and this has first derivative $-2c_1e^{-2t} + c_2e^t + (t+1)e^t$. Using the initial conditions we need $c_1 + c_2 = 0$ and $-2c_1 + c_2 + 1 = 0$. So $c_1 = \frac{1}{3}$ and $c_2 = -\frac{1}{3}$, given a solution of $\frac{1}{3}e^{-2t} + (t-\frac{1}{3})e^t$.

4. (5 points) Find a general solution to the following system of differential equations by transforming into a single differential equation,

$$\begin{aligned} x_1' &= -2x_1 + x_2 \\ x_2' &= -4x_1 + 3x_2. \end{aligned}$$

Solution: Using the first equation to solve for x_2 we get $x_2 = x'_1 + 2x_1$. Substituting into the second equation we get $x''_1 + 2x'_1 = -4x_1 + 3x'_1 + 6x_1$, or $x''_1 - x'_1 - 2x_1 = 0$ whose characteristic equation has roots -1, 2 so $x_1 = c_1e^{-t} + c_2e^{2t}$. Then $x_2 = -c_1e^{-t} + 2c_2e^{2t} + 2c_1e^{-t} + 2c_2e^{2t} = c_1e^{-t} + 4c_2e^{2t}$.

5. (5 points) Find the inverse of

$$\begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix},$$

without using a formula.

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 4 & 9 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & -4 & 1 \end{bmatrix}$$
(row 2 minus 4 times row 1)
$$\begin{bmatrix} 1 & 0 & 9 & -2 \\ 0 & 1 & -4 & 1 \end{bmatrix}$$
(row 1 minus 2 times row 2)

 $\begin{bmatrix} -9 & -2 \\ 1 & -4 \end{bmatrix}$

So the inverse is

6. (5 points) Given that t^5 is a solution to $t^2y'' - 6ty' + 10y = 0$ find another solution.

Name:__

Solution: We use reduction of order, and guess $y = v(t)t^5$ is a solution. Then $y' = v't^5 + 5t^4v$ and $y'' = v''t^5 + 10t^4v' + 20t^3v$. Substituting we get

$$t^{2}(v''t^{5} + 10t^{4}v' + 20t^{3}v) - 6t(v't^{5} + 5t^{4}v) + 10t^{5}v = 0$$

which simplifies to

$$t^7v'' + 4t^6v' = 0.$$

Rearranging we have that

$$\frac{v''}{v'} = \frac{-4}{t}.$$

Thus $\ln |v'| = -4 \ln |t| + C = \ln(t^{-4}) + C$ and $v' = Ct^{-4}$. Thus $v = c_1 t^{-3} + c_2$, and t^2 is another solution.