1. (5 points) $t$ and $e^{t^{2}}$ are solutions to the differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, show that they are fundamental solutions and use this work to determine $p(t)$.

Solution: The Wronskian of $t$ and $e^{t^{2}}$ is $t \cdot 2 t e^{t^{2}}-1 \cdot e^{t^{2}}=\left(2 t^{2}-1\right) e^{t^{2}}$ which is non-zero for $t \neq \pm \frac{1}{\sqrt{2}}$, thus these form a fundamental solution on all intervals not including these points. To determine $p(t)$, we note that

$$
\begin{aligned}
W & =c e^{-\int p(t)} \\
\left(2 t^{2}-1\right) e^{t^{2}} & =c e^{-\int p(t)} \\
\ln \left(\left(2 t^{2}-1\right) e^{t^{2}}\right) & =\ln \left(c e^{-\int p(t)}\right) \\
\ln \left(2 t^{2}-1\right)+t^{2} & =\ln (c)-\int p(t) .
\end{aligned}
$$

Taking the derivative of both sides with respect to $t$ we get,

$$
\frac{4 t}{2 t^{2}-1}+2 t=-p(t)
$$

so $p(t)=\frac{4 t}{1-2 t^{2}}-2 t$.
2. (5 points) Find all eigenvalues and the eigenvector corresponding to the smallest eigenvalue for

$$
\left[\begin{array}{lll}
0 & 2 & 1 \\
2 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Solution: We first consider

$$
\operatorname{det}\left[\begin{array}{ccc}
-\lambda & 2 & 1 \\
2 & -\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array}\right]
$$

This is

$$
\begin{aligned}
& (-\lambda)(-\lambda)(1-\lambda)+2 \cdot 1 \cdot 1+1 \cdot 2 \cdot 1-(1 \cdot(-\lambda) 1)-(1 \cdot 1 \cdot(-\lambda))-((1-\lambda) \cdot 2 \cdot 2) \\
& =-\lambda^{3}+\lambda^{2}+4+\lambda+\lambda-4+4 \lambda \\
& =-\lambda^{3}+\lambda^{2}+6 \lambda .
\end{aligned}
$$

Thus the eigenvalues are $-2,0$, and 3 . The eigenvalue associated with -2 satisfies that $2 v_{1}+2 v_{2}+v_{3}=0,2 v_{1}+2 v_{2}+v_{3}=0$ and $v_{1}+v_{2}+3 v_{3}=0$. Subtracting twice the last equation from the first or second, we see that $-5 v_{3}=0$ and so $v_{3}=0$. Then we $v_{1}=-v_{2}$, so $(1,-1,0)$ is an eigenvector associated with the eigenvalue -2 .
3. (5 points) Find the solution to the initial value problem $y^{\prime \prime}+y^{\prime}-2 y=3 e^{t}$ where $y(0)=0$ and $y^{\prime}(0)=0$.
$\qquad$

Solution: The characteristic equation for the associated homogeneous solution is $r^{2}+r-$ $2=0$ which has roots $r=1,-2$. Thus when using undetermined coefficients, the guess should have the form Ate ${ }^{t}$. Which has first derivative $A(t+1) e^{t}$ and second derivative $A(t+2) e^{t}$. Substituting we want $A$ so that

$$
A(t+2) e^{t}+A(t+1) e^{t}-2 A t e^{t}=3 e^{t}
$$

which yields $A=1$. Thus the general form of the solution is $c_{1} e^{-2 t}+c_{2} e^{t}+t e^{t}$, and this has first derivative $-2 c_{1} e^{-2 t}+c_{2} e^{t}+(t+1) e^{t}$. Using the initial conditions we need $c_{1}+c_{2}=0$ and $-2 c_{1}+c_{2}+1=0$. So $c_{1}=\frac{1}{3}$ and $c_{2}=-\frac{1}{3}$, given a solution of $\frac{1}{3} e^{-2 t}+\left(t-\frac{1}{3}\right) e^{t}$.
4. (5 points) Find a general solution to the following system of differential equations by transforming into a single differential equation,

$$
\begin{aligned}
x_{1}^{\prime} & =-2 x_{1}+x_{2} \\
x_{2}^{\prime} & =-4 x_{1}+3 x_{2} .
\end{aligned}
$$

Solution: Using the first equation to solve for $x_{2}$ we get $x_{2}=x_{1}^{\prime}+2 x_{1}$. Substituting into the second equation we get $x_{1}^{\prime \prime}+2 x_{1}^{\prime}=-4 x_{1}+3 x_{1}^{\prime}+6 x_{1}$, or $x_{1}^{\prime \prime}-x_{1}^{\prime}-2 x_{1}=0$ whose characteristic equation has roots $-1,2$ so $x_{1}=c_{1} e^{-t}+c_{2} e^{2 t}$. Then $x_{2}=-c_{1} e^{-t}+2 c_{2} e^{2 t}+$ $2 c_{1} e^{-t}+2 c_{2} e^{2 t}=c_{1} e^{-t}+4 c_{2} e^{2 t}$.
5. (5 points) Find the inverse of

$$
\left[\begin{array}{ll}
1 & 2 \\
4 & 9
\end{array}\right],
$$

without using a formula.

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
4 & 9 & 0 & 1
\end{array}\right]} \\
& \left.\left[\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & 1 & -4 & 1
\end{array}\right] \text { (row } 2 \text { minus } 4 \text { times row } 1\right) \\
& {\left[\begin{array}{cccc}
1 & 0 & 9 & -2 \\
0 & 1 & -4 & 1
\end{array}\right](\text { row } 1 \text { minus } 2 \text { times row } 2)}
\end{aligned}
$$

So the inverse is

$$
\left[\begin{array}{cc}
-9 & -2 \\
1 & -4
\end{array}\right]
$$

6. (5 points) Given that $t^{5}$ is a solution to $t^{2} y^{\prime \prime}-6 t y^{\prime}+10 y=0$ find another solution.
$\qquad$

Solution: We use reduction of order, and guess $y=v(t) t^{5}$ is a solution. Then $y^{\prime}=$ $v^{\prime} t^{5}+5 t^{4} v$ and $y^{\prime \prime}=v^{\prime \prime} t^{5}+10 t^{4} v^{\prime}+20 t^{3} v$. Substituting we get

$$
t^{2}\left(v^{\prime \prime} t^{5}+10 t^{4} v^{\prime}+20 t^{3} v\right)-6 t\left(v^{\prime} t^{5}+5 t^{4} v\right)+10 t^{5} v=0
$$

which simplifies to

$$
t^{7} v^{\prime \prime}+4 t^{6} v^{\prime}=0
$$

Rearranging we have that

$$
\frac{v^{\prime \prime}}{v^{\prime}}=\frac{-4}{t}
$$

Thus $\ln \left|v^{\prime}\right|=-4 \ln |t|+C=\ln \left(t^{-4}\right)+C$ and $v^{\prime}=C t^{-4}$. Thus $v=c_{1} t^{-3}+c_{2}$, and $t^{2}$ is another solution.
$\qquad$

