1. (5 points) If y is a solution to $y^{\prime \prime}+\sin (t) y^{\prime}+t^{2} y=\cos (t)$ such that $y(\pi)=1$ and $y^{\prime}(\pi)=0$, find $y^{\prime \prime}(\pi)$ and $y^{\prime \prime \prime}(\pi)$.

Solution: First we note that $y^{\prime \prime}(\pi)+\sin (\pi) y^{\prime}(\pi)+\pi^{2} y(\pi)=\cos (\pi)$ and so $y^{\prime \prime}(\pi)=-1-\pi^{2}$. Differentiating with respect to t, we have that

$$
y^{\prime \prime \prime}+\cos (t) y^{\prime}+\sin (t) y^{\prime \prime}+2 t y+t^{2} y^{\prime}=-\sin (t) .
$$

Thus $y^{\prime \prime \prime}(\pi)+\sin (\pi) y^{\prime \prime}(\pi)+\left(\cos (\pi)+\pi^{2}\right) y^{\prime}(\pi)+2 \pi y(\pi)=-\sin (\pi)$ and hence $y^{\prime \prime \prime}(\pi)=2 \pi$.
2. (5 points) The matrix $A=\left[\begin{array}{cc}-1 & -2 \\ 5 & 5\end{array}\right]$ has eigenvalues $2 \pm i$ and eigenvectors $\left[\begin{array}{c}-3 \pm i \\ 5\end{array}\right]$. Find two real valued fundamental solutions to $\mathrm{x}^{\prime}=A \mathrm{x}$ and plot a phase portrait for the solutions. Be sure to label the two fundamental solutions.

Solution: From the eigenvalues and eigenvectors we know that the fundamental solutions are

$$
e^{2 t}\left(\left[\begin{array}{c}
-3 \\
5
\end{array}\right] \cos (t)-\left[\begin{array}{l}
1 \\
0
\end{array}\right] \sin (t)\right) \quad \text { and } \quad e^{2 t}\left(\left[\begin{array}{c}
-3 \\
5
\end{array}\right] \sin (t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] \cos (t)\right)
$$

Since the real part of the eigenvalues is positive, they spiral out. Oberserving that at $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ the derivative vector is $\left[\begin{array}{c}-2 \\ 5\end{array}\right]$ we know that it is spiraling counter-clockwise.
3. (5 points) The system of differential equations $\mathbf{x}^{\prime}=A \mathbf{x}$ has a fundamental matrix

$$
\Psi(t)=\left[\begin{array}{cc}
e^{t} & e^{2 t} \\
-e^{t} & e^{2 t}
\end{array}\right] .
$$

Find the general solution to

$$
\mathbf{x}^{\prime}=A \mathbf{x}+\left[\begin{array}{c}
e^{t} \sin (t)+\frac{e^{2 t}}{t} \\
-e^{t} \sin (t)+\text { frace }^{2 t} t
\end{array}\right] .
$$

Solution: Let $g(t)$ be the non-homogeneous part of the differential equation. We will use variation of parameters to guess the solution, so assume $\mathbf{x}=\Psi \mathbf{v}(t)$. Thus $\Psi^{\prime} \mathbf{v}(t)+\Psi \mathbf{v}^{\prime}(t)=$ $A \Psi \mathbf{v}(t)+g(t)$. Since Ψ is a solution to the associated homogeneous matrix differential equation, $A \Psi=\Psi^{\prime}$ and so we have $\Psi \mathbf{v}^{\prime}(t)=g(t)$.

$$
\left[\begin{array}{ccc}
e^{t} & e^{2 t} & e^{t} \sin (t)+\frac{e^{2 t}}{t} \\
-e^{t} & e^{2 t} & -e^{t} \sin (t)+\frac{e^{2 t}}{t}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
e^{t} & e^{2 t} & e^{t} \sin (t)+\frac{e^{2 t}}{t} \\
0 & 2 e^{2 t} & 2 \frac{e^{2 t}}{t}
\end{array}\right]
$$

\qquad

Thus $v_{2}^{\prime}(t)=\frac{1}{t}$ and $e^{t} v_{1}^{\prime}(t)+e^{2 t} v_{2}^{\prime}(t)=e^{t} \sin (t)+\frac{e^{2 t}}{t}$. Thus $v_{1}^{\prime}(t)=\sin (t)$ and the solution is

$$
\left[\begin{array}{cc}
e^{t} & e^{2 t} \\
-e^{t} & e^{2 t}
\end{array}\right]\left[\begin{array}{c}
-\cos (t)+c_{1} \\
\ln |t|
\end{array}\right] .
$$

4. (5 points) If y satisfies

$$
y^{\prime \prime}+5 y^{\prime}+6 y=\cos (t)+t^{2} \quad y(0)=2 \quad y^{\prime}(0)=-1
$$

find $\mathcal{L}\{y\}$ and from this indicate what terms you would expect in the general solution. Be sure to tie your conclusions to the Laplace transform.

Solution: Let $Y(s)=\mathcal{L}\{y(t)\}$, then taking the Laplace transform

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)+5(Y(s)-y(0))+6 Y(s)=\frac{s}{s^{2}+1}+\frac{2}{s^{3}} .
$$

Thus

$$
\left(s^{2}+5 s+6\right) Y(s)-2 s+1-10=\frac{s}{s^{2}+1}+\frac{2}{s^{3}}
$$

and $Y(s)=\frac{s}{\left(s^{2}+1\right)\left(s^{2}+5 s+6\right)}+\frac{2}{s^{2}\left(s^{2}+5 s+6\right)}+\frac{2 s+9}{s^{2}+5 s+6}$. The partial fraction decomposition of $Y(s)$ will take the form $\frac{A s+B}{s^{2}+1}+\frac{C+D s+E s^{2}}{s^{3}}+\frac{F}{s+2}+\frac{G}{s+3}$, thus the expected form of the solution will be $A \cos (t)+B \sin (t)+\frac{C}{2} t^{2}+D t+E+F e^{-2 t}+G e^{-3 t}$.
5. (5 points) A model rocket has two engines that produce $200 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$ of thrust each for 20 seconds. Unfortunately one of the engines fails after 10 seconds. The constant for force exerted by air resistance is $10 \mathrm{~kg} / \mathrm{s}$ and the rocket weighs 2 kg . For ease of calculation, treat the acceleration due to gravity as a constant $10 \mathrm{~m} / \mathrm{s}^{2}$. Recall from the first exam that the differential equation governing the flight of the rocket is $y^{\prime \prime}+5 y^{\prime}=\frac{F-10}{10}$ where F is the force provided by the thrust provided by the engines. Using Laplace transforms, find the position of the rocket as a function of time.

Solution: First note that for the first 10 seconds $F=400$, then for the next 10 seconds $F=200$, and there after $F=0$. Thus $F=400-200 u_{10}(t)-200 u_{20}(t)$ and so the differential equation is

$$
y^{\prime \prime}+5 y^{\prime}=39-20 u_{10}(t)-20 u_{20}(t),
$$

with $y(0)=y^{\prime}(0)=0$. Thus $\left(s^{2}+5 s\right) \mathcal{L} y=\frac{39-10 e^{-10 s}-10 e^{-20 s}}{s}$. Let $H(s)=\frac{1}{s^{2}(s+5)}=$ $-\frac{1}{25 s}+\frac{1}{5 s^{2}}+\frac{1}{25} \frac{1}{s+5}$. Then $\mathcal{L}^{-1}\{H(s)\}=\frac{1}{25}\left(-1+5 t+e^{-5 t}\right)$ and $y(t)=\frac{39}{25}(-1+5 t+$ $\left.e^{-5 t}\right)-\frac{2}{5} u_{10}(t)\left(-1+5(t-10)+e^{-5(t-10)}\right)-f r a c 25 u_{20}(t)\left(-1+5(t-20)+e^{-5(t-20)}\right)$
6. (5 points) The matrix

$$
A=\left[\begin{array}{cc}
7 & -1 \\
4 & 3
\end{array}\right]
$$

has eigenvalue 5 with algebraic multiplicity 2 and eigenvector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Find the general form of the solution to the differential equation $\mathbf{x}^{\prime}=A \mathbf{x}$.

Solution: We need to solve $(A-5 I) \nu=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

$$
\left[\begin{array}{lll}
2 & -1 & 1 \\
4 & -2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Thus the solutions are $\left[\begin{array}{c}\frac{1+\alpha}{2} \\ \alpha\end{array}\right]$. But the part corresponding to α is a multiple of the eigenvector so the generic solution is

$$
c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right] e^{5 t}+c_{2}\left(\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right] e^{5 t}+\left[\begin{array}{l}
1 \\
2
\end{array}\right] t e^{5 t}\right)
$$

\qquad

