1. (4 points) Prove the following statement by induction. For all $n \geq 1$,

$$
1+2+3+\cdots+(n-1)+n+(n-1)+\cdots+3+2+1=n^{2}
$$

2. (4 points) Prove the following statement by induction. For all $n \geq 2$,

$$
n!<n^{n}
$$

3. (4 points) The sequence b_{n} is given by the recursive definition $b_{1}=1$ and $b_{n}=4 b_{n-1}+1$ for $n \geq 2$. Carefully develop an explicit formula for b_{n}.
4. (4 points) Find the coefficient of $x^{28} y^{222} r^{103} s^{147}$ in $(x+y+r+s)^{500}$.
5. (4 points) The sequence a_{n} is given by the recurrence $a_{1}=5$ and $a_{n}=a_{n-1}+3$ for $n \geq 2$. Carefully explain how to find $a_{1}+\cdots+a_{500}$.
6. (4 points) Alice is paving a walkway that will be 2 ft by $n \mathrm{ft}$. She has two types of pavers available to her, an "L" shaped paver that is a total of 3 square feet as well ans a square paver that is a total of 1 square foot. Develop a recursive solution for the number of ways Alice can pave the walkway. (Hint: If $n=1$, there is 1 way, if $n=2$ there are 5 ways, and if $n=3$ there are 11 ways.)
7. (4 points) For each of the following expressions find the coefficient of $x^{6} y^{12}$.
(a) $\left(x^{2}+y^{3}\right)^{7}$
(b) $\left(\frac{x}{y}+y^{3}\right)^{10}$
(c) $\left(x^{2}+y^{3}\right)^{18}$
(d) $\left(\frac{x}{y}+y^{3}\right)^{12}$
