1. (4 points) Prove the following statement by induction. For all $n \ge 1$,

$$1 + 2 + 3 + \dots + (n - 1) + n + (n - 1) + \dots + 3 + 2 + 1 = n^{2}$$

2. (4 points) Prove the following statement by induction. For all $n \ge 2$,

 $n! < n^n$

- 3. (4 points) The sequence b_n is given by the recursive definition $b_1 = 1$ and $b_n = 4b_{n-1} + 1$ for $n \ge 2$. Carefully develop an explicit formula for b_n .
- 4. (4 points) Find the coefficient of $x^{28}y^{222}r^{103}s^{147}$ in $(x + y + r + s)^{500}$.
- 5. (4 points) The sequence a_n is given by the recurrence $a_1 = 5$ and $a_n = a_{n-1} + 3$ for $n \ge 2$. Carefully explain how to find $a_1 + \cdots + a_{500}$.
- 6. (4 points) Alice is paving a walkway that will be 2ft by nft. She has two types of pavers available to her, an "L" shaped paver that is a total of 3 square feet as well and a square paver that is a total of 1 square foot. Develop a *recursive* solution for the number of ways Alice can pave the walkway. (Hint: If n = 1, there is 1 way, if n = 2 there are 5 ways, and if n = 3 there are 11 ways.)
- 7. (4 points) For each of the following expressions find the coefficient of x^6y^{12} .

(a)
$$(x^2 + y^3)^7$$

(b) $(\frac{x}{y} + y^3)^{10}$
(c) $(x^2 + y^3)^{18}$
(d) $(\frac{x}{y} + y^3)^{12}$