1. Consider the group \(G = \{1, i, -1, -i\} \) under multiplication. For an arbitrary but fixed element \(a \) in \(G \), define a map \(h_a : G \rightarrow G \) by \(h_a(x) = xa \) for all \(x \in G \). Find the maps \(h_i \), \(h_1 \), \(h_{-1} \) and \(h_{-i} \). Show that they are permutations on the set of elements in \(G \).

Answer: Let \(G \) be \(\{1, i, -1, -i\} \). The Cayley table of \(G \) is the following:

\[
\begin{array}{cccc}
 \cdot & 1 & i & -1 & -i \\
 1 & 1 & i & -1 & -i \\
i & i & -1 & -i & 1 \\
-1 & -1 & -i & 1 & i \\
-i & -i & 1 & i & -1 \\
\end{array}
\]

Hence \(h_1 = \begin{pmatrix} 1 & i & -1 & -i \\ 1 & i & -1 & -i \end{pmatrix} \), \(h_i = \begin{pmatrix} 1 & i & -1 & -i \\ i & -1 & -i & 1 \end{pmatrix} \), \(h_{-1} = \begin{pmatrix} 1 & i & -1 & -i \\ -1 & -i & 1 & i \end{pmatrix} \), \(h_{-i} = \begin{pmatrix} 1 & i & -1 & -i \\ -i & 1 & i & -1 \end{pmatrix} \). Since these functions are one-to-one and onto, they are permutations on \(G \).

2. For each \(a \) in the arbitrary group \(G \), define a mapping \(h_a : G \rightarrow G \) by \(h_a(x) = xa \) for all \(x \) in \(G \). Prove that \(h_a \) is a permutation on the set of elements in \(G \).

Answer: For each \(a \in G \), define the map \(h_a : G \rightarrow G \) by \(h_a(x) = xa \) for all \(x \in G \). To show \(h_a \) is a permutation we have to show \(h_a \) is well-defined, one-to-one and onto. First we show \(h_a \) is well-defined. Suppose \(x = y \). Then \(xa = ya \). Hence \(h_a(x) = h_a(y) \). Therefore \(h_a \) is well-defined. Next, we show \(h_a \) is one-to-one. Suppose \(x \neq y \). Then \(xa \neq ya \). This implies that \(h_a(x) \neq h_a(y) \). So \(h_a \) is one-to-one. Finally, we show that \(h_a \) is onto. Let \(b \in G \) and find an element \(x \in G \) such that \(h_a(x) = b \). This implies that \(xa = b \) which yields \(x = ba^{-1} \). This shows that \(h_a \) is onto.

3. For each \(a \) in the arbitrary group \(G \), define a mapping \(h_a : G \rightarrow G \) by \(h_a(x) = xa \) for all \(x \). Show that the set of permutations \(H = \{ h_a \mid a \in G \} \) is a group under function composition.
Answer: Let $H = \{ h_a \mid a \in G \}$. We want to show that H is a group under function composition. If e is the identity of G, then h_e is the identity of H. This can be seen from the followings: $h_e h_e(x) = h_e(xa) = h_a(ea) = xae = xae = h_a(x)$. So $h_e h_a = h_a$ for any $a \in G$. Similarly, we have $h_a h_e = h_a$ for every $a \in G$. Next, we show that if $a \in G$, then $h_{a^{-1}}$ is the inverse h_a. To see this consider $h_{a^{-1}} h_a(x) = h_{a^{-1}} (xa) = (xa)a^{-1} = x = xe = h_e(x)$. Hence $h_{a^{-1}} h_a = h_e$ and similarly $h_a h_{a^{-1}} = h_e$. Therefore $h_{a^{-1}}$ is the inverse h_a in H. Since the function composition is associative, the associativity law holds in H. Thus H is a group consisting of a set of all permutations on G.

4. For each a in the arbitrary group G, define a mapping $h_a : G \to G$ by $h_a(x) = xa$ for all $x \in G$. Show that the permutation group $H = \{ h_a \mid a \in G \}$ is anti-isomorphic to the group G. [Note: A function $\phi : H \to G$ is an anti-isomorphism if and only if ϕ is one-to-one, onto, and satisfies $\phi(xy) = \phi(y)\phi(x)$ for all $x, y \in H$.]

Answer: We want to show G is anti-isomorphic to H. That is, we want to produce an anti-isomorphism from G to H. Consider the mapping $\phi : G \to H$ defined by $\phi(a) = h_a$ for all $a \in G$. First, we show ϕ is well-defined. Suppose $a = b$. This implies $xa = xb$ for $x \in G$. Hence from the definition of h_a, we get $h_a(x) = h_b(x)$ for all $x \in G$. This yields $h_a = h_b$ and therefore $\phi(a) = \phi(b)$. Hence we see that ϕ is well-defined. Second, we show that ϕ is one-to-one. Suppose $a \neq b$. Then $xa \neq xb$. Hence $h_a(x) \neq h_b(x)$ and thus $h_a \neq h_b$. Therefore $\phi(a) \neq \phi(b)$. That is ϕ is one-to-one. Third, we show that ϕ is onto. Since $\phi(a) = h_a$ for each $a \in G$, ϕ is clearly onto. Finally, we show that $\phi(ab) = \phi(b)\phi(a)$ for all $a, b \in G$. For this first we show $h_{ab} = h_b h_a$. Since $h_{ab}(x) = xab = (xa)b = h_b(xa) = h_b(h_a(x)) = h_b h_a(x)$, we see that $h_{ab} = h_b h_a$. Since $\phi(ab) = h_{ab} = h_b h_a = \phi(b)\phi(a)$, the mapping ϕ is an anti-isomorphism and G and H are anti-isomorphic to each other.

5. For each a in an arbitrary group G, define a mapping $\phi_a(x) = axa^{-1}$ for all $x \in G$. Prove that ϕ_a is an isomorphism from G onto G.

Answer: Define $\phi_a : G \to G$ by $\phi_a(x) = axa^{-1}$ for all $x \in G$. First, we show ϕ_a is well-defined. Suppose $x = y$. This implies $ax = ay$ and $axa^{-1} = aya^{-1}$. Hence $\phi_a(x) = \phi_a(y)$. Therefore ϕ_a is well-defined. Second, we show ϕ_a is one-to-one. Suppose $x \neq y$. Then $axa^{-1} \neq aya^{-1}$ and hence $\phi_a(x) \neq \phi_a(y)$. So ϕ_a is one-to-one. Third, we show ϕ_a is onto. Pick an arbitrary element b in G and find an element x in G such that $\phi_a(x) = b$. If an
element x exists, then $axa^{-1} = b$. Hence $x = a^{-1}ba$. Since $a^{-1}ba \in G$, such an element x always exists. Thus ϕ_a is onto. Finally, we show ϕ_a preserves group operation. Consider $\phi_a(xy) = axya^{-1} = axa^{-1}aya^{-1} = \phi_a(x)\phi_a(y)$. Therefor ϕ_a is an isomorphism from G onto G. [Recall that ϕ_a is known as the inner automorphism of the group G.]

6. Let G be a cyclic group of order 105. Find all subgroups of G.

Answer: Since G is a cyclic group of order 105, therefore $G = \langle g \rangle$ for some $g \in G$, and $G \simeq \mathbb{Z}_{105}$. The divisors of 105 are 1, 3, 5, 7, 15, 21, 35, 105. Hence the subgroups of G are: $\langle g^{105} \rangle, \langle g^{35} \rangle, \langle g^{21} \rangle, \langle g^{15} \rangle, \langle g^{7} \rangle, \langle g^{5} \rangle$ and $\langle g^{1} \rangle$. Note that $\langle g^{105} \rangle$ is same as $\langle e \rangle$.

7. Find an isomorphism from the group of integers $(\mathbb{Z}, +)$ to the group of even integers $(2\mathbb{Z}, +)$.

Answer: We want to find an isomorphism from $\phi : \mathbb{Z} \rightarrow 2\mathbb{Z}$. Define $\phi(x) = 2x$ for each $x \in \mathbb{Z}$. Then ϕ is one-to-one and also onto. Next show that $\phi(x + y) = \phi(x) + \phi(y)$ which is really easy. Hence $\mathbb{Z} \simeq 2\mathbb{Z}$.

8. Show that $U(8)$ is isomorphic to $U(12)$.

Answer: We want to show $U(8) \simeq U(12)$. Since $U(8) = \{1, 3, 5, 7\}$ and $U(12) = \{1, 5, 7, 11\}$ define a mapping $\phi : U(8) \rightarrow U(12)$ by

$$
\phi = \begin{pmatrix}
1 & 3 & 5 & 7 \\
1 & 5 & 7 & 11
\end{pmatrix}.
$$

Then clearly π is one-to-one and onto. Next we show $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in U(8)$.

<table>
<thead>
<tr>
<th>$U(8)$</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$U(12)$</th>
<th>1</th>
<th>5</th>
<th>7</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

We see that if we replace each entry x in the multiplication table for $U(8)$ by $\phi(x)$, then we get the multiplication table for $U(12)$. Hence ϕ satisfies $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in U(8)$.

9. Let \mathbb{C} be the set of complex numbers and

$$M = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}.$$

Show that \mathbb{C} and M are isomorphic under addition.

Answer: We want to show that $\mathbb{C} \simeq M$. Define a function $\phi : \mathbb{C} \to M$ as

$$\phi(a + ib) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \quad \text{for all } a + ib \in \mathbb{C}.$$

First, we show that ϕ is well-defined. Suppose $a_1 + ib_1 = a_2 + ib_2$. Then we have $a_1 = a_2$ and $b_1 = b_2$. Therefore $\begin{pmatrix} a_1 & -b_1 \\ b_1 & a_1 \end{pmatrix} = \begin{pmatrix} a_2 & -b_2 \\ b_2 & a_2 \end{pmatrix}$ and $\phi(a_1 + ib_1) = \phi(a_2 + ib_2)$. Thus ϕ is well-defined. Second, we show ϕ is one-to-one. Suppose $\phi(a_1 + ib_1) = \phi(a_2 + ib_2)$. Then $\begin{pmatrix} a_1 & -b_1 \\ b_1 & a_1 \end{pmatrix} = \begin{pmatrix} a_2 & -b_2 \\ b_2 & a_2 \end{pmatrix}$. Therefore $a_1 = a_2$ and $b_1 = b_2$. This implies that $a_1 + ib_1 = a_2 + ib_2$. Hence ϕ is one-to-one. It is easy to see ϕ is onto. Finally, we show ϕ satisfies $\phi(z_1 + z_2) = \phi(z_1) + \phi(z_2)$ for all $z_1, z_2 \in \mathbb{C}$. For $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$ consider

$$\phi(z_1 + z_2) = \phi(a_1 + ib_1 + a_2 + ib_2)$$

$$= \phi(a_1 + a_2 + i(b_1 + b_2))$$

$$= \begin{pmatrix} a_1 + a_2 & -b_1 - b_2 \\ b_1 + b_2 & a_1 + a_2 \end{pmatrix}$$

$$= \begin{pmatrix} a_1 & -b_1 \\ b_1 & a_1 \end{pmatrix} + \begin{pmatrix} a_2 & -b_2 \\ b_2 & a_2 \end{pmatrix}$$

$$= \phi(a_1 + ib_1) + \phi(a_2 + ib_2)$$

$$= \phi(z_1) + \phi(z_2).$$

Therefore ϕ is an isomorphism from \mathbb{C} onto M, and $\mathbb{C} \simeq M$.